Limit cycle bifurcations in a kind of perturbed Liénard system

被引:0
|
作者
Junmin Yang
Lina Zhou
机构
[1] Hebei Normal University,College of Mathematics and Information Science
[2] Hebei Key Laboratory of Computational Mathematics and Applications,undefined
来源
Nonlinear Dynamics | 2016年 / 85卷
关键词
Limit cycle; Liénard system; Bifurcation; Homoclinic loop;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the number of limit cycles of a class of quartic Liénard systems with polynomial perturbations of degree n, 20≤n≤24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$20\le n\le 24$$\end{document}. Let H(n, 4) denote the maximal number of limit cycles of Liénard system x˙=y,y˙=-g(x)-εf(x)y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{x}}=y,\, {\dot{y}}=-g(x)-\varepsilon f(x)y$$\end{document}, where ε≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \ge 0$$\end{document} is a small parameter, f(x), g(x) are polynomials in x and degf=n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\deg f=n$$\end{document}, degg=m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\deg g=m$$\end{document}. We obtain five better lower bounds of H(n, 4) for 20≤n≤24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$20\le n\le 24$$\end{document}, which greatly improve the existing results.
引用
收藏
页码:1695 / 1704
页数:9
相关论文
共 50 条