Limit cycle bifurcations in a kind of perturbed Liénard system

被引:0
|
作者
Junmin Yang
Lina Zhou
机构
[1] Hebei Normal University,College of Mathematics and Information Science
[2] Hebei Key Laboratory of Computational Mathematics and Applications,undefined
来源
Nonlinear Dynamics | 2016年 / 85卷
关键词
Limit cycle; Liénard system; Bifurcation; Homoclinic loop;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the number of limit cycles of a class of quartic Liénard systems with polynomial perturbations of degree n, 20≤n≤24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$20\le n\le 24$$\end{document}. Let H(n, 4) denote the maximal number of limit cycles of Liénard system x˙=y,y˙=-g(x)-εf(x)y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{x}}=y,\, {\dot{y}}=-g(x)-\varepsilon f(x)y$$\end{document}, where ε≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \ge 0$$\end{document} is a small parameter, f(x), g(x) are polynomials in x and degf=n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\deg f=n$$\end{document}, degg=m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\deg g=m$$\end{document}. We obtain five better lower bounds of H(n, 4) for 20≤n≤24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$20\le n\le 24$$\end{document}, which greatly improve the existing results.
引用
收藏
页码:1695 / 1704
页数:9
相关论文
共 50 条
  • [31] Generalized Liénard equations, Cyclicity and Hopf-Takens bifurcations
    Caubergh M.
    Françoise J.-P.
    [J]. Qualitative Theory of Dynamical Systems, 2004, 5 (2) : 195 - 222
  • [32] Bifurcations of limit cycles of perturbed completely integrable systems
    Tudoran, Razvan M.
    Girban, Anania
    [J]. NONLINEARITY, 2017, 30 (03) : 1058 - 1088
  • [33] Analysis and control of limit cycle bifurcations
    Basso, M
    Genesio, R
    [J]. BIFURCATION CONTROL: THEORY AND APPLICATIONS, 2003, 293 : 127 - 154
  • [34] Bifurcations of limit cycles in a perturbed quintic Hamiltonian system with six double homoclinic loops
    Gao, Yong-xi
    Wu, Yu-hai
    Tian, Li-xin
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2008, 24 (02): : 313 - 328
  • [35] Bifurcations of Limit Cycles in A Perturbed Quintic Hamiltonian System with Six Double Homoclinic Loops
    Yong-xi Gao Yu-hai Wu Li-xin Tian Department of Mathematics
    [J]. Acta Mathematicae Applicatae Sinica, 2008, (02) : 313 - 328
  • [36] Bifurcations of limit cycles for a perturbed quintic Hamiltonian system with four infinite singular points
    Zhou, Hongxian
    Xu, Wei
    Zhao, Xiaoshan
    Zhou, Bingchang
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (02) : 686 - 700
  • [37] Bifurcations of limit cycles in a perturbed quintic Hamiltonian system with six double homoclinic loops
    Yong-xi Gao
    Yu-hai Wu
    Li-xin Tian
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2008, 24 : 313 - 328
  • [38] Bifurcations of Limit Cycles from a Quintic Hamiltonian System with a Heteroclinic Cycle
    Li Qin ZHAO
    De Ping LI
    [J]. Acta Mathematica Sinica,English Series, 2014, 30 (03) : 411 - 422
  • [39] Limit cycle bifurcations in a planar piecewise quadratic system with multiple parameters
    Shuhua Gong
    Maoan Han
    [J]. Advances in Difference Equations, 2020
  • [40] Bifurcations of Limit Cycles from a Quintic Hamiltonian System with a Heteroclinic Cycle
    Zhao, Li Qin
    Li, De Ping
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (03) : 411 - 422