LIMIT CYCLE BIFURCATIONS OF A KIND OF LIENARD SYSTEM WITH A HYPOBOLIC SADDLE AND A NILPOTENT CUSP

被引:0
|
作者
Yang, Junmin [1 ,2 ]
Liang, Feng [3 ]
机构
[1] Hebei Normal Univ, Coll Math & Informat Sci, Shijiazhuang 050016, Peoples R China
[2] Hebei Key Lab Computat Math & Applicat, Shijiazhuang 050016, Peoples R China
[3] Anhui Normal Univ, Coll Math & Comp Sci, Wuhu 241000, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
limit cycle; Lienard system; nilpotent cusp; heteroclinic loop; HAMILTONIAN-SYSTEMS; SMALL PERTURBATIONS; NUMBER;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper gives a general theorem on the number of limit cycles of a near Hamiltonian system with a heteroclinic loop passing through a hyperbolic saddle and a nilpotent cusp. Then we study a kind of Lienard systems of type (n, 4) for 3 <= n <= 27 and obtain the lower bound of the maximal number of limit cycles for this kind of system.
引用
收藏
页码:515 / 526
页数:12
相关论文
共 50 条
  • [1] LIMIT CYCLE BIFURCATIONS OF SOME LIENARD SYSTEMS WITH A NILPOTENT CUSP
    Yang, Junmin
    Han, Maoan
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (11): : 3829 - 3839
  • [2] Limit Cycle Bifurcations by Perturbing a Compound Loop with a Cusp and a Nilpotent Saddle
    Tian, Huanhuan
    Han, Maoan
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [3] Limit cycles in a Lienard system with a cusp and a nilpotent saddle of order 7
    Asheghi, R.
    Bakhshalizadeh, A.
    [J]. CHAOS SOLITONS & FRACTALS, 2015, 73 : 120 - 128
  • [4] Limit cycle bifurcations in a kind of perturbed Lienard system
    Yang, Junmin
    Zhou, Lina
    [J]. NONLINEAR DYNAMICS, 2016, 85 (03) : 1695 - 1704
  • [5] Limit Cycle Bifurcations for a Kind of Lienard System with Degree Seven
    Hu, Xing
    Yang, Junmin
    [J]. JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2022, 28 (02) : 267 - 290
  • [6] BIFURCATION OF LIMIT CYCLES IN A CLASS OF LIENARD SYSTEMS WITH A CUSP AND NILPOTENT SADDLE
    Zaghian, Ali
    Kazemi, Rasool
    Zangeneh, Hamid R. Z.
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2016, 78 (03): : 95 - 106
  • [7] On the Distribution of Limit Cycles in a Lienard System with a Nilpotent Center and a Nilpotent Saddle
    Asheghi, R.
    Bakhshalizadeh, A.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (02):
  • [8] LIMIT CYCLE BIFURCATIONS NEAR A DOUBLE HOMOCLINIC LOOP WITH A NILPOTENT SADDLE
    Han, Maoan
    Yang, Junmin
    Xiao, Dongmei
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (08):
  • [9] The Dynamics of a Kind of Lienard System with Sixth Degree and Its Limit Cycle Bifurcations Under Perturbations
    Han, Maoan
    Yang, Junmin
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2020, 19 (01)
  • [10] ON THE LIMIT CYCLES OF A KIND OF LIENARD SYSTEM WITH A NILPOTENT CENTER UNDER PERTURBATIONS
    Yang, Junmin
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2012, 2 (03): : 325 - 339