LIMIT CYCLE BIFURCATIONS OF A KIND OF LIENARD SYSTEM WITH A HYPOBOLIC SADDLE AND A NILPOTENT CUSP

被引:0
|
作者
Yang, Junmin [1 ,2 ]
Liang, Feng [3 ]
机构
[1] Hebei Normal Univ, Coll Math & Informat Sci, Shijiazhuang 050016, Peoples R China
[2] Hebei Key Lab Computat Math & Applicat, Shijiazhuang 050016, Peoples R China
[3] Anhui Normal Univ, Coll Math & Comp Sci, Wuhu 241000, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
limit cycle; Lienard system; nilpotent cusp; heteroclinic loop; HAMILTONIAN-SYSTEMS; SMALL PERTURBATIONS; NUMBER;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper gives a general theorem on the number of limit cycles of a near Hamiltonian system with a heteroclinic loop passing through a hyperbolic saddle and a nilpotent cusp. Then we study a kind of Lienard systems of type (n, 4) for 3 <= n <= 27 and obtain the lower bound of the maximal number of limit cycles for this kind of system.
引用
下载
收藏
页码:515 / 526
页数:12
相关论文
共 50 条