Invariant formulation of the electromechanical enthalpy function of transversely isotropic piezoelectric materials

被引:0
|
作者
J. Schröder
D. Gross
机构
[1] Institut für Mechanik,Institut für Mechanik, AG IV
[2] Technische Universität Darmstadt,undefined
来源
关键词
Piezoelectricity; Electrostriction; Invariant theory; Transverse isotropy; Nonlinear coupling;
D O I
暂无
中图分类号
学科分类号
摘要
Theoretical and numerical aspects of the formulation of electromechanically coupled, transversely isotropic solids are discussed within the framework of the invariant theory. The main goal is the representation of the governing constitutive equations for reversible material behaviour based on an anisotropic electromechanical enthalpy function, which automatically fulfills the requirements of material symmetry. The introduction of a preferred direction in the argument list of the enthalpy function allows the construction of isotropic tensor functions, which reflect the inherent geometrical and physical symmetries of the polarized medium. After presenting the general framework, we consider two important model problems within this setting: i) the linear piezoelectric solid; and ii) the nonlinear electrostriction. A parameter identification of the invariant- and the common coordinate-dependent formulation is performed for both cases. The tensor generators for the stresses, electric displacements and the moduli are derived in detail, and some representative numerical examples are presented.
引用
收藏
页码:533 / 552
页数:19
相关论文
共 50 条
  • [31] Modelling of the dynamic effective characteristics of fiber reinforced transversely isotropic piezoelectric materials
    Levin, VM
    Michelitsch, TM
    Gao, H
    SMART STRUCTURES AND MATERIALS 2002: ACTIVE MATERIALS: BEHAVIOR AND MECHANICS, 2002, 4699 : 103 - 113
  • [32] An axisymmetric interface edge of bonded transversely isotropic piezoelectric materials under torsion
    Department of Applied Mathematics and Mechanics, Hefei University of Polytechnic, Hefei, 230009, Taiwan
    不详
    不详
    J Appl Mech Trans ASME, 3 (821-823):
  • [33] The Formulation of the Quadratic Failure Criterion for Transversely Isotropic Materials: Mathematical and Logical Considerations
    Li, Shuguang
    Xu, Mingming
    Sitnikova, Elena
    JOURNAL OF COMPOSITES SCIENCE, 2022, 6 (03):
  • [34] ACOUSTOELASTICITY IN TRANSVERSELY ISOTROPIC MATERIALS
    JOHNSON, GC
    MASE, GT
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1984, 75 (06): : 1741 - 1747
  • [35] On the constitutive relations for isotropic and transversely isotropic materials
    Long, N. M. A. Nik
    Khaldjigitov, A. A.
    Adambaev, U.
    APPLIED MATHEMATICAL MODELLING, 2013, 37 (14-15) : 7726 - 7740
  • [36] Acoustoelasticity in transversely isotropic materials
    Johnson, G.C.
    Mase, G.T.
    1741, (75):
  • [37] Elasticity of transversely isotropic materials
    Zhjiang University, Hangzhou, China
    不详
    Solid Mech. Appl., 2006, (1-441):
  • [38] Determination of piezoelectric Eshelby tensor in transversely isotropic piezoelectric solids
    Mikata, Y
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2000, 38 (06) : 605 - 641
  • [39] Fundamental solutions for transversely isotropic piezoelectric media
    丁皓江
    梁剑
    陈波
    Science China Mathematics, 1996, (07) : 766 - 775
  • [40] Fundamental solutions for transversely isotropic piezoelectric media
    Ding, HJ
    Liang, J
    Chen, B
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1996, 39 (07): : 766 - 775