Invariant formulation of the electromechanical enthalpy function of transversely isotropic piezoelectric materials

被引:0
|
作者
J. Schröder
D. Gross
机构
[1] Institut für Mechanik,Institut für Mechanik, AG IV
[2] Technische Universität Darmstadt,undefined
来源
关键词
Piezoelectricity; Electrostriction; Invariant theory; Transverse isotropy; Nonlinear coupling;
D O I
暂无
中图分类号
学科分类号
摘要
Theoretical and numerical aspects of the formulation of electromechanically coupled, transversely isotropic solids are discussed within the framework of the invariant theory. The main goal is the representation of the governing constitutive equations for reversible material behaviour based on an anisotropic electromechanical enthalpy function, which automatically fulfills the requirements of material symmetry. The introduction of a preferred direction in the argument list of the enthalpy function allows the construction of isotropic tensor functions, which reflect the inherent geometrical and physical symmetries of the polarized medium. After presenting the general framework, we consider two important model problems within this setting: i) the linear piezoelectric solid; and ii) the nonlinear electrostriction. A parameter identification of the invariant- and the common coordinate-dependent formulation is performed for both cases. The tensor generators for the stresses, electric displacements and the moduli are derived in detail, and some representative numerical examples are presented.
引用
收藏
页码:533 / 552
页数:19
相关论文
共 50 条
  • [21] The effective properties of piezoelectric composite materials with transversely isotropic spherical inclusions
    Jiang, B
    Fang, DN
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 1999, 20 (04) : 388 - 399
  • [22] Saint-Venant end effects of transversely isotropic piezoelectric materials
    Tai, Masyuki
    Wijeyewickrema, Anil C.
    Llouquet, Olivier
    ADVANCES IN FRACTURE AND MATERIALS BEHAVIOR, PTS 1 AND 2, 2008, 33-37 : 725 - 730
  • [23] ELECTROMECHANICAL STRESS ANALYSIS OF TRANSVERSELY ISOTROPIC SOLENOIDS
    GRAY, WH
    BALLOU, JK
    JOURNAL OF APPLIED PHYSICS, 1977, 48 (07) : 3100 - 3109
  • [24] Physically based strain invariant set for materials exhibiting transversely isotropic behavior
    Criscione, JC
    Douglas, AS
    Hunter, WC
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2001, 49 (04) : 871 - 897
  • [25] Axisymmetric interface edge of bonded transversely isotropic piezoelectric materials under torsion
    Liu, Y.-H.
    Xu, J.-Q.
    Ding, H.-J.
    Journal of Applied Mechanics, Transactions ASME, 1999, 66 (03): : 821 - 823
  • [27] Green's functions and boundary element method for transversely isotropic piezoelectric materials
    Ding, HJ
    Chen, WQ
    Jiang, AM
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2004, 28 (08) : 975 - 987
  • [28] An asymmetric interface edge of bonded transversely isotropic piezoelectric materials under torsion
    Liu, YH
    Xu, JQ
    Ding, HJ
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1999, 66 (03): : 821 - 823
  • [29] Fractal contact analysis for transversely isotropic piezoelectric materials: Theoretical and numerical predictions
    Peng, Daiming
    Li, Xiangyu
    TRIBOLOGY INTERNATIONAL, 2023, 181
  • [30] Phase field fracture model of transversely isotropic piezoelectric materials with thermal effect
    Tan, Yu
    He, Yuxiang
    Liu, Chang
    Li, Xiangyu
    ENGINEERING FRACTURE MECHANICS, 2022, 268