Joint learning improves protein abundance prediction in cancers

被引:0
|
作者
Hongyang Li
Omer Siddiqui
Hongjiu Zhang
Yuanfang Guan
机构
[1] University of Michigan,Department of Computational Medicine and Bioinformatics
[2] University of Michigan,Department of Internal Medicine
来源
BMC Biology | / 17卷
关键词
Cancer; Proteomics; Transcriptomics; Machine learning;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Bias learning improves data driven models for streamflow prediction
    Lin, Yongen
    Wang, Dagang
    Meng, Yue
    Sun, Wei
    Qiu, Jianxiu
    Shangguan, Wei
    Cai, Jingheng
    Kim, Yeonjoo
    Dai, Yongjiu
    JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2023, 50
  • [42] Efficient differentially private learning improves drug sensitivity prediction
    Antti Honkela
    Mrinal Das
    Arttu Nieminen
    Onur Dikmen
    Samuel Kaski
    Biology Direct, 13
  • [43] Efficient differentially private learning improves drug sensitivity prediction
    Honkela, Antti
    Das, Mrinal
    Nieminen, Arttu
    Dikmen, Onur
    Kaski, Samuel
    BIOLOGY DIRECT, 2018, 13
  • [44] Use of a Machine Learning Algorithm Improves Prediction of Progression to Diabetes
    Cahn, Avivit
    Shoshan, Avi
    Sagiv, Tal
    Yesharim, Rachel
    Raz, Itamar
    Goshen, Ran
    DIABETES, 2018, 67
  • [45] USING MACHINE LEARNING TO DEVELOP MODELS FOR THE PREDICTION OF UPPER GASTROINTESTINAL CANCERS
    Ho, Kai Man Alexander
    Rosenfeld, Avi
    Hogan, Aine
    McBain, Hazel
    Duku, Margaret
    Wolfson, Paul
    Wilson, Ashley
    Lovat, Laurence
    GUT, 2022, 71 : A3 - A3
  • [46] Exploiting heterogeneous sequence properties improves prediction of protein disorder
    Obradovic, Z
    Peng, K
    Vucetic, S
    Radivojac, P
    Dunker, AK
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2005, 61 : 176 - 182
  • [47] Interpretable Machine Learning Model for Locoregional Relapse Prediction in Oropharyngeal Cancers
    Giraud, Paul
    Giraud, Philippe
    Nicolas, Eliot
    Boisselier, Pierre
    Alfonsi, Marc
    Rives, Michel
    Bardet, Etienne
    Calugaru, Valentin
    Noel, Georges
    Chajon, Enrique
    Pommier, Pascal
    Morelle, Magali
    Perrier, Lionel
    Liem, Xavier
    Burgun, Anita
    Bibault, Jean Emmanuel
    CANCERS, 2021, 13 (01) : 1 - 13
  • [48] A meta-learning approach to improving radiation response prediction in cancers
    Zhang, Yuening
    Qiu, Li
    Ren, Yongyong
    Cheng, Zhiwei
    Li, Leijie
    Yao, Siqiong
    Zhang, Chengdong
    Luo, Zhiguo
    Lu, Hui
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 150
  • [49] A Joint Inverse Reinforcement Learning and Deep Learning Model for Drivers' Behavioral Prediction
    Wu, Guojun
    Li, Yanhua
    Luo, Shikai
    Song, Ge
    Wang, Qichao
    He, Jing
    Ye, Jieping
    Qie, Xiaohu
    Zhu, Hongtu
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 2805 - 2812
  • [50] A Joint-Learning-Based Dynamic Graph Learning Framework for Structured Prediction †
    Li, Bin
    Fan, Yunlong
    Gao, Miao
    Sataer, Yikemaiti
    Gao, Zhiqiang
    ELECTRONICS, 2023, 12 (11)