Efficient differentially private learning improves drug sensitivity prediction

被引:0
|
作者
Antti Honkela
Mrinal Das
Arttu Nieminen
Onur Dikmen
Samuel Kaski
机构
[1] University of Helsinki,Helsinki Institute for Information Technology HIIT, Department of Computer Science
[2] University of Helsinki,Department of Mathematics and Statistics
[3] University of Helsinki,Department of Public Health
[4] Aalto University,Helsinki Institute for Information Technology HIIT, Department of Computer Science
来源
关键词
Differential privacy; Linear regression; Drug sensitivity prediction; Machine learning;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Efficient differentially private learning improves drug sensitivity prediction
    Honkela, Antti
    Das, Mrinal
    Nieminen, Arttu
    Dikmen, Onur
    Kaski, Samuel
    [J]. BIOLOGY DIRECT, 2018, 13
  • [2] Representation transfer for differentially private drug sensitivity prediction
    Niinimaki, Teppo
    Heikkila, Mikko A.
    Honkela, Antti
    Kaski, Samuel
    [J]. BIOINFORMATICS, 2019, 35 (14) : I218 - I224
  • [3] Multitask learning improves prediction of cancer drug sensitivity
    Han Yuan
    Ivan Paskov
    Hristo Paskov
    Alvaro J. González
    Christina S. Leslie
    [J]. Scientific Reports, 6
  • [4] Multitask learning improves prediction of cancer drug sensitivity
    Yuan, Han
    Paskov, Ivan
    Paskov, Hristo
    Gonzalez, Alvaro J.
    Leslie, Christina S.
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [5] Efficient Error Prediction for Differentially Private Algorithms
    Nelson, Boel
    [J]. ARES 2021: 16TH INTERNATIONAL CONFERENCE ON AVAILABILITY, RELIABILITY AND SECURITY, 2021,
  • [6] Online Sensitivity Optimization in Differentially Private Learning
    Galli, Filippo
    Palamidessi, Catuscia
    Cucinotta, Tommaso
    [J]. THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 11, 2024, : 12109 - 12117
  • [7] Differentially Private and Communication Efficient Collaborative Learning
    Ding, Jiahao
    Liang, Guannan
    Bi, Jinbo
    Pan, Miao
    [J]. THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 7219 - 7227
  • [8] Memory Optimization for Energy-Efficient Differentially Private Deep Learning
    Edstrom, Jonathon
    Das, Hritom
    Xu, Yiwen
    Gong, Na
    [J]. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2020, 28 (02) : 307 - 316
  • [9] Noise-Efficient Learning of Differentially Private Partitioning Machine Ensembles
    Huang, Zhanliang
    Lei, Yunwen
    Kaban, Ata
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT IV, 2023, 13716 : 587 - 603
  • [10] Energy Efficient and Differentially Private Federated Learning via a Piggyback Approach
    Chen, Rui
    Huang, Chenpei
    Qin, Xiaoqi
    Ma, Nan
    Pan, Miao
    Shen, Xuemin
    [J]. IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (04) : 2698 - 2711