Complexation ability of tetrasulfosubstituted cobalt(II) phthalocyanine toward ORF3a protein of SARS-CoV-2 virus

被引:0
|
作者
O. I. Koifman
V. E. Maizlish
M. O. Koifman
N. Sh. Lebedeva
E. S. Yurina
Yu. A. Gubarev
E. L. Gur’ev
机构
[1] Russian Academy of Sciences,G. A. Krestov Institute of Solution Chemistry
[2] Ivanovo State University of Chemistry and Technology,undefined
[3] Lobachesky State University of Nizhny Novgorod,undefined
来源
Russian Chemical Bulletin | 2023年 / 72卷
关键词
phthalocyanine; protein; virus SARS-CoV-2; complex formation; photooxidation;
D O I
暂无
中图分类号
学科分类号
摘要
Complex formation processes of tetrasulfosubstituted cobalt(II) phthalocyanine with ORF3a accessory protein of SARS-CoV-2 coronavirus were studied. The interaction of ORF3a protein with SARS-CoV-2 virus with tetrasulfosubstituted cobalt(II) phthalocyanine affords a stable complex in which metallophthalocyanine exists in the monomeric form. The complex formation induces slight changes in the secondary structure of the protein by increasing the fraction of disordered fragments of the polypeptide chain. The photoirradiation of the complex of ORF3a protein of SARS-CoV-2 virus with tetrasulfosubstituted cobalt(II) phthalocyanine leads to the photooxidation of amino acid residues of the protein.
引用
收藏
页码:233 / 238
页数:5
相关论文
共 50 条
  • [21] Cryo-EM structure of SARS-CoV-2 ORF3a in lipid nanodiscs
    Kern, David M.
    Sorum, Ben
    Mali, Sonali S.
    Hoel, Christopher M.
    Sridharan, Savitha
    Remis, Jonathan P.
    Toso, Daniel B.
    Kotecha, Abhay
    Bautista, Diana M.
    Brohawn, Stephen G.
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2021, 28 (07) : 573 - +
  • [22] Cryo-EM structure of SARS-CoV-2 ORF3a in lipid nanodiscs
    David M. Kern
    Ben Sorum
    Sonali S. Mali
    Christopher M. Hoel
    Savitha Sridharan
    Jonathan P. Remis
    Daniel B. Toso
    Abhay Kotecha
    Diana M. Bautista
    Stephen G. Brohawn
    Nature Structural & Molecular Biology, 2021, 28 : 573 - 582
  • [23] ORF3a mutation associated with higher mortality rate in SARS-CoV-2 infection
    Majumdar, Parinita
    Niyogi, Sougata
    EPIDEMIOLOGY AND INFECTION, 2020, 148
  • [24] SARS-CoV-2 and ORF3a: Nonsynonymous Mutations, Functional Domains, and Viral Pathogenesis
    Issa, Elio
    Merhi, Georgi
    Panossian, Balig
    Salloum, Tamara
    Tokajian, Sima
    MSYSTEMS, 2020, 5 (03)
  • [25] Expression of SARS-CoV-2 Viral Protein ORF3A in Renal Tubular Epithelial Cells Induces Injury
    Zhou, Weibin
    Cai, Hong
    Chen, Ya
    Lee, Kyung
    He, John C.
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2021, 32 (10): : 57 - 57
  • [26] SARS-CoV-2 ORF3a accessory protein is a water-permeable channel that induces lysosome swelling
    Michelucci, Antonio
    Sforna, Luigi
    Focaia, Riccardo
    Leonardi, Maria Vittoria
    Di Battista, Angela
    Rastelli, Giorgia
    Vespa, Simone
    Boncompagni, Simona
    Di Cristina, Manlio
    Catacuzzeno, Luigi
    COMMUNICATIONS BIOLOGY, 2025, 8 (01)
  • [27] ORF3a of SARS-CoV-2 promotes lysosomal exocytosis-mediated viral egress
    Chen, Di
    Zheng, Qiaoxia
    Sun, Long
    Ji, Mingming
    Li, Yan
    Deng, Hongyu
    Zhang, Hong
    DEVELOPMENTAL CELL, 2021, 56 (23) : 3250 - +
  • [28] SARS-CoV-2 viroporin encoded by ORF3a triggers the NLRP3 inflammatory pathway
    Xu, Huanzhou
    Akinyemi, Ibukun A.
    Chitre, Siddhi A.
    Loeb, Julia C.
    Lednicky, John A.
    McIntosh, Michael T.
    Bhaduri-McIntosh, Sumita
    VIROLOGY, 2022, 568 : 13 - 22
  • [29] Understanding the Role of SARS-CoV-2 ORF3a in Viral Pathogenesis and COVID-19
    Zhang, Jiantao
    Ejikemeuwa, Amara
    Gerzanich, Volodymyr
    Nasr, Mohamed
    Tang, Qiyi
    Simard, J. Marc
    Zhao, Richard Y.
    FRONTIERS IN MICROBIOLOGY, 2022, 13
  • [30] Investigating SARS-CoV-2 ORF3a binding to human TRAF2 and TRAF3
    Busscher, Brianna M.
    Befekadu, Henock
    Liu, Zhonghua
    Wang, Chuanping
    Xiao, Tsan Sam
    JOURNAL OF IMMUNOLOGY, 2023, 210 (01):