Solitons, breathers and rogue waves for a sixth-order variable-coefficient nonlinear Schrödinger equation in an ocean or optical fiber

被引:0
|
作者
Shu-Liang Jia
Yi-Tian Gao
Chen Zhao
Zhong-Zhou Lan
Yu-Jie Feng
机构
[1] Beijing University of Aeronautics and Astronautics,Ministry
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Under investigation in this paper is a sixth-order variable-coefficient nonlinear Schrödinger equation in an ocean or optical fiber. Through the Darboux transformation (DT) and generalized DT, we obtain the multi-soliton solutions, breathers and rogue waves. Choosing different values of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha$\end{document}(x), β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta$\end{document}(x), γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma$\end{document}(x) and δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\delta$\end{document}(x), which are the coefficients of the third-, fourth-, fifth- and sixth-order dispersions, respectively, we investigate their effects on those solutions, where x is the scaled propagation variable. When α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha$\end{document}(x), β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta$\end{document}(x), γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma$\end{document}(x) and δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\delta$\end{document}(x) are chosen as the linear, parabolic and periodic functions, we obtain the parabolic, cubic and quasi-periodic solitons, respectively. Head-on and overtaking interactions between the two solitons are presented, and the interactions are elastic. Besides, with certain values of the spectral parameter λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda$\end{document}, a shock region between the two solitons appears, and the interaction is inelastic. Interactions between two kinds of the breathers are also studied, and we find that the interaction regions are similar to those of the second-order rogue waves. Rogue waves are split into some first-order rogue waves when α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha$\end{document}(x), β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta$\end{document}(x), γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma$\end{document}(x) and δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\delta$\end{document}(x) are the periodic or odd-numbered functions.
引用
收藏
相关论文
共 50 条
  • [41] Solitons and rogue waves of the quartic nonlinear Schrödinger equation by Riemann–Hilbert approach
    Nan Liu
    Boling Guo
    Nonlinear Dynamics, 2020, 100 : 629 - 646
  • [42] A higher-order coupled nonlinear Schrödinger system: solitons, breathers, and rogue wave solutions
    Rui Guo
    Hui-Hui Zhao
    Yuan Wang
    Nonlinear Dynamics, 2016, 83 : 2475 - 2484
  • [43] Conservation laws, vector solitons and breathers of a generalized variable-coefficient N-coupled higher-order nonlinear Schrödinger system from inhomogeneous optical fibers
    Zhao, Xin
    Liu, Rong-Xiang
    Wang, Xu-Hu
    Zhou, Li-Jian
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (12):
  • [44] Modulation instability and rogue waves for the sixth-order nonlinear Schrodinger equation with variable coefficients on a periodic background
    Shi, Wei
    Zhaqilao
    NONLINEAR DYNAMICS, 2022, 109 (04) : 2979 - 2995
  • [45] Rogue Waves of the Higher-Order Dispersive Nonlinear Schrdinger Equation
    王晓丽
    张卫国
    翟保国
    张海强
    CommunicationsinTheoreticalPhysics, 2012, 58 (10) : 531 - 538
  • [46] Symbolic computation on soliton solutions for variable-coefficient nonlinear Schrödinger equation in nonlinear optics
    Wen-Jun Liu
    Bo Tian
    Optical and Quantum Electronics, 2012, 43 : 147 - 162
  • [47] Controllable behaviors of spatiotemporal breathers in a generalized variable-coefficient nonlinear Schrödinger model from arterial mechanics and optical fibers
    Hai-Yan Chen
    Hai-Ping Zhu
    Nonlinear Dynamics, 2015, 81 : 141 - 149
  • [48] Breathers and rogue waves: Demonstration with coupled nonlinear Schrödinger family of equations
    N VISHNU PRIYA
    M SENTHILVELAN
    M LAKSHMANAN
    Pramana, 2015, 84 : 339 - 352
  • [49] Rogue Waves and Their Patterns in the Vector Nonlinear Schrödinger Equation
    Guangxiong Zhang
    Peng Huang
    Bao-Feng Feng
    Chengfa Wu
    Journal of Nonlinear Science, 2023, 33
  • [50] A sixth-order nonlinear Schrödinger equation as a reduction of the nonlinear Klein–Gordon equation for slowly modulated wave trains
    Yuri V. Sedletsky
    Ivan S. Gandzha
    Nonlinear Dynamics, 2018, 94 : 1921 - 1932