Solitons, breathers and rogue waves for a sixth-order variable-coefficient nonlinear Schrödinger equation in an ocean or optical fiber

被引:0
|
作者
Shu-Liang Jia
Yi-Tian Gao
Chen Zhao
Zhong-Zhou Lan
Yu-Jie Feng
机构
[1] Beijing University of Aeronautics and Astronautics,Ministry
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Under investigation in this paper is a sixth-order variable-coefficient nonlinear Schrödinger equation in an ocean or optical fiber. Through the Darboux transformation (DT) and generalized DT, we obtain the multi-soliton solutions, breathers and rogue waves. Choosing different values of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha$\end{document}(x), β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta$\end{document}(x), γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma$\end{document}(x) and δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\delta$\end{document}(x), which are the coefficients of the third-, fourth-, fifth- and sixth-order dispersions, respectively, we investigate their effects on those solutions, where x is the scaled propagation variable. When α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha$\end{document}(x), β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta$\end{document}(x), γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma$\end{document}(x) and δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\delta$\end{document}(x) are chosen as the linear, parabolic and periodic functions, we obtain the parabolic, cubic and quasi-periodic solitons, respectively. Head-on and overtaking interactions between the two solitons are presented, and the interactions are elastic. Besides, with certain values of the spectral parameter λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda$\end{document}, a shock region between the two solitons appears, and the interaction is inelastic. Interactions between two kinds of the breathers are also studied, and we find that the interaction regions are similar to those of the second-order rogue waves. Rogue waves are split into some first-order rogue waves when α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha$\end{document}(x), β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta$\end{document}(x), γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma$\end{document}(x) and δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\delta$\end{document}(x) are the periodic or odd-numbered functions.
引用
收藏
相关论文
共 50 条
  • [21] Semirational rogue waves for the three coupled variable-coefficient nonlinear Schrödinger equations in an inhomogeneous multicomponent optical fibre
    Han-Peng Chai
    Bo Tian
    Jun Chai
    Zhong Du
    Pramana, 2019, 92
  • [22] Modulation instability, rogue waves and spectral analysis for the sixth -order nonlinear Schr?dinger equation
    Yue, Yunfei
    Huang, Lili
    Chen, Yong
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 89
  • [23] Optical breathers and rogue waves via the modulation instability for a higher-order generalized nonlinear Schrödinger equation in an optical fiber transmission system
    Hui-Min Yin
    Bo Tian
    Chen-Rong Zhang
    Xia-Xia Du
    Xin-Chao Zhao
    Nonlinear Dynamics, 2019, 97 : 843 - 852
  • [24] The exact solutions for the nonlinear variable-coefficient fifth-order Schr?dinger equation
    Li, Cheng'ao
    Lu, Junliang
    RESULTS IN PHYSICS, 2022, 39
  • [25] Lax pair, rogue-wave and soliton solutions for a variable-coefficient generalized nonlinear Schrödinger equation in an optical fiber, fluid or plasma
    Da-Wei Zuo
    Yi-Tian Gao
    Long Xue
    Yu-Jie Feng
    Optical and Quantum Electronics, 2016, 48
  • [26] Solitons, rogue waves and interaction behaviors of a third-order nonlinear Schr?dinger equation
    Shi, Kai-Zhong
    Ren, Bo
    Shen, Shou-Feng
    Wang, Guo-Fang
    Peng, Jun-Da
    Wang, Wan-Li
    RESULTS IN PHYSICS, 2022, 37
  • [27] Rogue waves of the sixth-order nonlinear Schrodinger equation on a periodic background
    Shi, Wei
    Zhaqilao
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2022, 74 (05)
  • [28] Breathers and rogue waves of the fifth-order nonlinear Schrödinger equation in the Heisenberg ferromagnetic spin chain
    Wen-Rong Sun
    Bo Tian
    Hui-Ling Zhen
    Ya Sun
    Nonlinear Dynamics, 2015, 81 : 725 - 732
  • [29] Soliton and breather solutions for the seventh-order variable-coefficient nonlinear Schrödinger equation
    Jie Jin
    Yi Zhang
    Optical and Quantum Electronics, 2023, 55
  • [30] Mixed Higher-Order Rogue Waves and Solitons for the Coupled Modified Nonlinear Schrödinger Equation
    Tao Xu
    Guoliang He
    Ming Wang
    Yanqing Wang
    Qualitative Theory of Dynamical Systems, 2023, 22