Perturbative Quantum Field Theory on Random Trees

被引:0
|
作者
Nicolas Delporte
Vincent Rivasseau
机构
[1] Université Paris-Sud,Laboratoire de physique théorique, CNRS UMR6827
[2] Université Paris-Saclay,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we start a systematic study of quantum field theory on random trees. Using precise probability estimates on their Galton–Watson branches and a multiscale analysis, we establish the general power counting of averaged Feynman amplitudes and check that they behave indeed as living on an effective space of dimension 4/3, the spectral dimension of random trees. In the “just renormalizable” case we prove convergence of the averaged amplitude of any completely convergent graph, and establish the basic localization and subtraction estimates required for perturbative renormalization. Possible consequences for an SYK-like model on random trees are briefly discussed.
引用
收藏
页码:857 / 887
页数:30
相关论文
共 50 条
  • [1] Perturbative Quantum Field Theory on Random Trees
    Delporte, Nicolas
    Rivasseau, Vincent
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 381 (3) : 857 - 887
  • [2] Perturbative quantum field theory
    Sterman, G
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2001, 16 (18): : 3041 - 3065
  • [3] Perturbative quantum field theory
    Sterman, G
    CHALLENGES FOR THE 21ST CENTURY, 2000, : 479 - 508
  • [4] Combinatorics of (perturbative) quantum field theory
    Kreimer, D
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 363 (4-6): : 387 - 424
  • [5] Geometries in perturbative quantum field theory
    Schnetz, Oliver
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2021, 15 (04) : 743 - 791
  • [6] On perturbative quantum field theory with boundary
    Bajnok, Z
    Böhm, G
    Takács, G
    NUCLEAR PHYSICS B, 2004, 682 (03) : 585 - 617
  • [7] NON-PERTURBATIVE QUANTUM FIELD THEORY
    BARRY M. MCCOY
    吴大峻
    Science China Mathematics, 1979, (09) : 1021 - 1032
  • [8] The Real Problem with Perturbative Quantum Field Theory
    Fraser, James D.
    BRITISH JOURNAL FOR THE PHILOSOPHY OF SCIENCE, 2020, 71 (02): : 391 - 413
  • [9] Star products and perturbative quantum field theory
    Hirschfeld, AC
    Henselder, P
    ANNALS OF PHYSICS, 2002, 298 (02) : 382 - 393
  • [10] Perturbative quantum gravity in double field theory
    Rutger H. Boels
    Christoph Horst
    Journal of High Energy Physics, 2016