Domination in Commuting Graph and its Complement

被引:0
|
作者
Ebrahim Vatandoost
Yasser Golkhandypour
机构
[1] Imam Khomeini International University,Department of Mathematics
关键词
Non-commutative ring; Commuting graph; Domination number; Signed domination number;
D O I
暂无
中图分类号
学科分类号
摘要
For each non-commutative ring R, the commuting graph of R is a graph with vertex set R\Z(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R\backslash Z(R)$$\end{document}, and two vertices x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x$$\end{document} and y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y$$\end{document} are adjacent if and only if x≠y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \ne y$$\end{document} and xy=yx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$xy = yx$$\end{document}. In this paper, we consider the domination and signed domination numbers on commuting graph Γ(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma (R)$$\end{document} for non-commutative ring R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document} with Z(R)={0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z(R) = \{ 0\}$$\end{document}. For a finite ring R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document}, it is shown that γ(Γ(R))+γ(Γ¯(R))=|R|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma (\varGamma (R)) + \gamma (\bar{\varGamma }(R)) = |R|$$\end{document} if and only if R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document} is the non-commutative ring on four elements. Also, we determine the domination number of Γ(∏i=1tRi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma (\prod\nolimits_{i = 1}^{t} R_{i} )$$\end{document} and commuting graph of non-commutative ring R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document} of order p3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^{3}$$\end{document}, where p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document} is prime. Moreover, an upper bound for the signed domination number of Γ(∏i=1tRi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma (\prod\nolimits_{i = 1}^{t} R_{i} )$$\end{document} is presented.
引用
收藏
页码:383 / 391
页数:8
相关论文
共 50 条
  • [31] RELATION BETWEEN ARBORICITIES OF A GRAPH AND ITS COMPLEMENT GRAPH
    张忠辅
    王建方
    徐登洲
    ChineseScienceBulletin, 1990, (22) : 1930 - 1931
  • [32] RELATION BETWEEN ARBORICITIES OF A GRAPH AND ITS COMPLEMENT GRAPH
    ZHANG, ZF
    WANG, JF
    XU, DZ
    CHINESE SCIENCE BULLETIN, 1990, 35 (22): : 1930 - 1931
  • [33] ON THE SZEGED INDEX AND ITS NON- COMMUTING GRAPH
    Alimon, Nur Idayu
    Sarmin, Nor Haniza
    Erfanian, Ahmad
    JURNAL TEKNOLOGI-SCIENCES & ENGINEERING, 2023, 85 (03): : 105 - 110
  • [34] The algebraic connectivity of a graph and its complement
    Afshari, B.
    Akbari, S.
    Moghaddamzadeh, M. J.
    Mohar, B.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 555 : 157 - 162
  • [35] THE DISTANCE BETWEEN A GRAPH AND ITS COMPLEMENT
    ZELINKA, B
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1987, 37 (01) : 120 - 123
  • [36] DEGREES AND CONNECTIVITIES OF A GRAPH AND ITS δ-COMPLEMENT
    Srisawat, Supakorn
    Vichitkunakorn, Panupong
    arXiv, 1600,
  • [37] On the rank of the Doob graph and its complement
    Hacioglu, Ilhan
    Kaskaloglu, Kerem
    KUWAIT JOURNAL OF SCIENCE, 2018, 45 (03) : 1 - 5
  • [38] SOME PARAMETERS OF GRAPH AND ITS COMPLEMENT
    XU, SI
    DISCRETE MATHEMATICS, 1987, 65 (02) : 197 - 207
  • [39] Packing triangles in a graph and its complement
    Keevash, P
    Sudakov, B
    JOURNAL OF GRAPH THEORY, 2004, 47 (03) : 203 - 216
  • [40] ABOUT TRIANGLES IN A GRAPH AND ITS COMPLEMENT
    NAIR, BR
    VIJAYAKUMAR, A
    DISCRETE MATHEMATICS, 1994, 131 (1-3) : 205 - 210