Domination in Commuting Graph and its Complement

被引:0
|
作者
Ebrahim Vatandoost
Yasser Golkhandypour
机构
[1] Imam Khomeini International University,Department of Mathematics
关键词
Non-commutative ring; Commuting graph; Domination number; Signed domination number;
D O I
暂无
中图分类号
学科分类号
摘要
For each non-commutative ring R, the commuting graph of R is a graph with vertex set R\Z(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R\backslash Z(R)$$\end{document}, and two vertices x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x$$\end{document} and y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y$$\end{document} are adjacent if and only if x≠y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \ne y$$\end{document} and xy=yx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$xy = yx$$\end{document}. In this paper, we consider the domination and signed domination numbers on commuting graph Γ(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma (R)$$\end{document} for non-commutative ring R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document} with Z(R)={0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z(R) = \{ 0\}$$\end{document}. For a finite ring R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document}, it is shown that γ(Γ(R))+γ(Γ¯(R))=|R|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma (\varGamma (R)) + \gamma (\bar{\varGamma }(R)) = |R|$$\end{document} if and only if R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document} is the non-commutative ring on four elements. Also, we determine the domination number of Γ(∏i=1tRi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma (\prod\nolimits_{i = 1}^{t} R_{i} )$$\end{document} and commuting graph of non-commutative ring R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document} of order p3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^{3}$$\end{document}, where p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document} is prime. Moreover, an upper bound for the signed domination number of Γ(∏i=1tRi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma (\prod\nolimits_{i = 1}^{t} R_{i} )$$\end{document} is presented.
引用
收藏
页码:383 / 391
页数:8
相关论文
共 50 条
  • [21] On the domination number of a graph and its total graph
    Murugan, E.
    Joseph, J. Paulraj
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (05)
  • [22] ON THE DOMINATION NUMBER OF A GRAPH AND ITS SQUARE GRAPH
    Murugan, E.
    Joseph, J. Paulraj
    KOREAN JOURNAL OF MATHEMATICS, 2022, 30 (02): : 391 - 402
  • [23] On the domination number of a graph and its block graph
    Murugan, E.
    Joseph, J. Paulraj
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (07)
  • [24] On roman domination number of functigraph and its complement
    Vatandoost, Ebrahim
    Shaminezhad, Athena
    COGENT MATHEMATICS & STATISTICS, 2021, 7
  • [25] On the difference of energies of a graph and its complement graph
    Mojallal, Seyed Ahmad
    Hansen, Pierre
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 595 (595) : 1 - 12
  • [26] ON THE BOOLEAN FUNCTION GRAPH OF A GRAPH AND ON ITS COMPLEMENT
    Janakiraman, T. N.
    Muthammai, S.
    Bhanumathi, M.
    MATHEMATICA BOHEMICA, 2005, 130 (02): : 113 - 134
  • [27] The connectivity of a graph and its complement
    Hellwig, Angelika
    Volkmann, Lutz
    DISCRETE APPLIED MATHEMATICS, 2008, 156 (17) : 3325 - 3328
  • [28] On the circumference of a graph and its complement
    Faudree, R. J.
    Lesniak, Linda
    Schiermeyer, Ingo
    DISCRETE MATHEMATICS, 2009, 309 (19) : 5891 - 5893
  • [29] THE DIAMETER OF A GRAPH AND ITS COMPLEMENT
    HARARY, F
    ROBINSON, RW
    AMERICAN MATHEMATICAL MONTHLY, 1985, 92 (03): : 211 - 212
  • [30] Nullity of a graph in terms of its domination number
    Wang, Xinlei
    Wong, Dein
    ARS COMBINATORIA, 2019, 142 : 119 - 128