Domination in Commuting Graph and its Complement

被引:0
|
作者
Ebrahim Vatandoost
Yasser Golkhandypour
机构
[1] Imam Khomeini International University,Department of Mathematics
关键词
Non-commutative ring; Commuting graph; Domination number; Signed domination number;
D O I
暂无
中图分类号
学科分类号
摘要
For each non-commutative ring R, the commuting graph of R is a graph with vertex set R\Z(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R\backslash Z(R)$$\end{document}, and two vertices x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x$$\end{document} and y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y$$\end{document} are adjacent if and only if x≠y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \ne y$$\end{document} and xy=yx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$xy = yx$$\end{document}. In this paper, we consider the domination and signed domination numbers on commuting graph Γ(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma (R)$$\end{document} for non-commutative ring R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document} with Z(R)={0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z(R) = \{ 0\}$$\end{document}. For a finite ring R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document}, it is shown that γ(Γ(R))+γ(Γ¯(R))=|R|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma (\varGamma (R)) + \gamma (\bar{\varGamma }(R)) = |R|$$\end{document} if and only if R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document} is the non-commutative ring on four elements. Also, we determine the domination number of Γ(∏i=1tRi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma (\prod\nolimits_{i = 1}^{t} R_{i} )$$\end{document} and commuting graph of non-commutative ring R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document} of order p3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^{3}$$\end{document}, where p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document} is prime. Moreover, an upper bound for the signed domination number of Γ(∏i=1tRi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma (\prod\nolimits_{i = 1}^{t} R_{i} )$$\end{document} is presented.
引用
收藏
页码:383 / 391
页数:8
相关论文
共 50 条
  • [1] Domination in Commuting Graph and its Complement
    Vatandoost, Ebrahim
    Golkhandypour, Yasser
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2017, 41 (A2): : 383 - 391
  • [2] DOMINATION PARAMETERS OF A GRAPH AND ITS COMPLEMENT
    Desormeaux, Wyatt J.
    Haynes, Teresa W.
    Henning, Michael A.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (01) : 203 - 215
  • [3] Connected domination in a signed graph and its complement
    Jeyalakshmi, P.
    Karuppasamy, K.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (01) : 345 - 356
  • [4] Connected Domination Number of a Graph and its Complement
    H. Karami
    S. M. Sheikholeslami
    Abdollah Khodkar
    Douglas B. West
    Graphs and Combinatorics, 2012, 28 : 123 - 131
  • [5] Signed domination numbers of a graph and its complement
    Haas, R
    Wexler, TB
    DISCRETE MATHEMATICS, 2004, 283 (1-3) : 87 - 92
  • [6] Connected Domination Number of a Graph and its Complement
    Karami, H.
    Sheikholeslami, S. M.
    Khodkar, Abdollah
    West, Douglas B.
    GRAPHS AND COMBINATORICS, 2012, 28 (01) : 123 - 131
  • [7] Neighborhood total domination of a graph and its complement
    Mojdeh, D. A.
    Salehi, M. R. Sayed
    Chellali, M.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2016, 65 : 37 - 44
  • [8] Total domination and total domination subdivision number of a graph and its complement
    Favaron, O.
    Karami, H.
    Sheikholeslami, S. M.
    DISCRETE MATHEMATICS, 2008, 308 (17) : 4018 - 4023
  • [9] THE PRODUCT OF THE INDEPENDENT DOMINATION NUMBERS OF A GRAPH AND ITS COMPLEMENT
    COCKAYNE, EJ
    FAVARON, O
    LI, H
    MACGILLIVRAY, G
    DISCRETE MATHEMATICS, 1991, 90 (03) : 313 - 317
  • [10] The product of the restrained domination numbers of a graph and its complement
    Johannes H. Hattingh
    Ernst J. Joubert
    Acta Mathematica Sinica, English Series, 2014, 30 : 445 - 452