Exploring spatial data through computational intelligence: a joint perspective

被引:0
|
作者
Marco Painho
Athanasios Vasilakos
Fernando Bacao
Witold Pedrycz
机构
[1] Informacao-Universidade Nova de Lisboa,Instituto Superior de Estatistica e Gestao de
[2] University of Thessaly,Dept. of Planning and Regional Development
[3] University of Alberta,Dept. of Electrical and Computer Engineering
来源
Soft Computing | 2005年 / 9卷
关键词
Geospatial data; GIS; Computational intelligence;
D O I
暂无
中图分类号
学科分类号
摘要
The dramatic increase in geospatial data occasioned by developments in digital mapping, remote sensing, IT, and widespread generalization of Geographic Information Systems (GIS), emphasises the importance of exploring new approaches to spatial analysis and modelling. This favours the creation of new knowledge and eventually helps the process of scientific discovery. In this context the special nature of spatial data is particularly relevant and should be taken into account (e.g. observations are not independent and data uncertainty and errors are often spatially structured). The tolerance of imprecision and uncertainty makes soft computing a potentially very useful tool in the GIS environment. Computational Intelligence (or Soft computing) fits particularly well with GIS applications in those cases where computationally hard problems cannot be solved by classical algorithmic approaches.
引用
收藏
页码:326 / 331
页数:5
相关论文
共 50 条
  • [41] Spatial economic resilience and accessibility: A joint perspective
    Osth, John
    Reggiani, Aura
    Galiazzo, Giacomo
    [J]. COMPUTERS ENVIRONMENT AND URBAN SYSTEMS, 2015, 49 : 148 - 159
  • [42] Computational intelligence based prediction of joint penetration in laser fabrication
    Jaypuria, Sanjib
    Mahapatra, Trupti Ranjan
    Sahoo, Sanjukta
    Jaypuria, Omkar
    [J]. MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 4854 - 4858
  • [43] Computational pathology: Exploring the spatial dimension of tumor ecology
    Nawaz, Sidra
    Yuan, Yinyin
    [J]. CANCER LETTERS, 2016, 380 (01) : 296 - 303
  • [44] Spatiotemporal Data Mining: A Computational Perspective
    Shekhar, Shashi
    Jiang, Zhe
    Ali, Reem Y.
    Eftelioglu, Emre
    Tang, Xun
    Gunturi, Venkata M. V.
    Zhou, Xun
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2015, 4 (04) : 2306 - 2338
  • [45] Exploring Bipedal Hopping through Computational Evolution
    Moore, Jared M.
    Shine, Catherine L.
    McGowan, Craig P.
    McKinley, Philip K.
    [J]. ARTIFICIAL LIFE, 2019, 25 (03) : 236 - 249
  • [46] Exploring Spatial Relationships for Knowledge Discovery in Spatial Data
    Buang, Norazwin
    Zin, Abdullah Mohd
    Zakaria, Mohamad Shanudin
    [J]. PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATIONS, 2009, : 561 - 565
  • [47] Data through the Computational Lens
    Kovalchuk, Sergey V.
    Abuhay, Tesfamariam M.
    Altintas, Ilkay
    Norman, Michael L.
    Lees, Michael H.
    Krzhizhanovskaya, Valeria V.
    Dongarra, Jack
    Sloot, Peter M. A.
    [J]. JOURNAL OF COMPUTATIONAL SCIENCE, 2017, 20 : 81 - 84
  • [48] Exploring a relationship between aggregate and individual levels spatial data through semivariogram models
    Pawitan, Gandhi
    Steel, David G.
    [J]. GEOGRAPHICAL ANALYSIS, 2006, 38 (03) : 310 - 325
  • [49] Spatial Data Mining: A Perspective of Big Data
    Wang, Shuliang
    Yuan, Hanning
    [J]. INTERNATIONAL JOURNAL OF DATA WAREHOUSING AND MINING, 2014, 10 (04) : 50 - 70
  • [50] Exploring the Web of Spatial Data with Facete
    Stadler, Claus
    Martin, Michael
    Auer, Soeren
    [J]. WWW'14 COMPANION: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, 2014, : 175 - 178