Spatiotemporal Data Mining: A Computational Perspective

被引:120
|
作者
Shekhar, Shashi [1 ]
Jiang, Zhe [1 ]
Ali, Reem Y. [1 ]
Eftelioglu, Emre [1 ]
Tang, Xun [1 ]
Gunturi, Venkata M. V. [2 ]
Zhou, Xun [3 ]
机构
[1] Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA
[2] IIIT Delhi Okhla, Indraprastha Inst Informat Technol, Dept Comp Sci & Engn, New Delhi 110020, India
[3] Univ Iowa, Dept Management Sci, Iowa City, IA 52242 USA
基金
美国国家科学基金会;
关键词
spatiotemporal data mining; survey; review; spatiotemporal statistics; spatiotemporal patterns; CORRELATION IMAGE-ANALYSIS; SPATIAL DATA; OUTLIER DETECTION; MODEL; PATTERNS; ALGORITHMS; DATABASES;
D O I
10.3390/ijgi4042306
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Explosive growth in geospatial and temporal data as well as the emergence of new technologies emphasize the need for automated discovery of spatiotemporal knowledge. Spatiotemporal data mining studies the process of discovering interesting and previously unknown, but potentially useful patterns from large spatiotemporal databases. It has broad application domains including ecology and environmental management, public safety, transportation, earth science, epidemiology, and climatology. The complexity of spatiotemporal data and intrinsic relationships limits the usefulness of conventional data science techniques for extracting spatiotemporal patterns. In this survey, we review recent computational techniques and tools in spatiotemporal data mining, focusing on several major pattern families: spatiotemporal outlier, spatiotemporal coupling and tele-coupling, spatiotemporal prediction, spatiotemporal partitioning and summarization, spatiotemporal hotspots, and change detection. Compared with other surveys in the literature, this paper emphasizes the statistical foundations of spatiotemporal data mining and provides comprehensive coverage of computational approaches for various pattern families. We also list popular software tools for spatiotemporal data analysis. The survey concludes with a look at future research needs.
引用
收藏
页码:2306 / 2338
页数:33
相关论文
共 50 条
  • [1] Advances in spatiotemporal data mining
    Liu, Dayou
    Chen, Huiling
    Qi, Hong
    Yang, Bo
    [J]. Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2013, 50 (02): : 225 - 239
  • [2] A Survey on Spatiotemporal and Semantic Data Mining
    Yuan, Quan
    Zhang, Chao
    Han, Jiawei
    [J]. TRENDS IN SPATIAL ANALYSIS AND MODELLING: DECISION-SUPPORT AND PLANNING STRATEGIES, 2018, 19 : 43 - 57
  • [3] Spatiotemporal data mining with cellular automata
    Fu, Karl
    Cai, Yang
    [J]. COMPUTATIONAL SCIENCE - ICCS 2006, PT 1, PROCEEDINGS, 2006, 3991 : 1001 - 1004
  • [4] Computational intelligence for data mining
    Embrechts, MJ
    [J]. 2001 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5: E-SYSTEMS AND E-MAN FOR CYBERNETICS IN CYBERSPACE, 2002, : 1484 - 1484
  • [5] Computational science and data mining
    Marginean, FA
    [J]. COMPUTATIONAL SCIENCE - ICCS 2003, PT III, PROCEEDINGS, 2003, 2659 : 644 - 651
  • [6] Computational aspects of data mining
    Marginean, FA
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2003, PT 1, PROCEEDINGS, 2003, 2667 : 614 - 622
  • [7] Spatiotemporal Data Mining for Distribution Load Expansion
    Arango, Hector Gustavo
    Lambert-Torres, Germano
    Valerio de Moraes, Carlos Henrique
    Borges Da Silva, Luiz Eduardo
    [J]. ADVANCES IN ELECTRICAL AND COMPUTER ENGINEERING, 2016, 16 (03) : 65 - 72
  • [8] Visual transformation for interactive spatiotemporal data mining
    Cai, Yang
    Stumpf, Richard
    Wynne, Timothy
    Tomlinson, Michelle
    Chung, Daniel Sai Ho
    Boutonnier, Xavier
    Ihmig, Matthias
    Franco, Rafael
    Bauernfeind, Nathaniel
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2007, 13 (02) : 119 - 142
  • [9] Visual transformation for interactive spatiotemporal data mining
    Yang Cai
    Richard Stumpf
    Timothy Wynne
    Michelle Tomlinson
    Daniel Sai Ho Chung
    Xavier Boutonnier
    Matthias Ihmig
    Rafael Franco
    Nathaniel Bauernfeind
    [J]. Knowledge and Information Systems, 2007, 13 : 119 - 142
  • [10] MINING ASSOCIATION RULES FOR TRAJECTORIES OF SPATIOTEMPORAL DATA
    Hong, Hao
    [J]. 2011 INTERNATIONAL CONFERENCE ON INSTRUMENTATION, MEASUREMENT, CIRCUITS AND SYSTEMS (ICIMCS 2011), VOL 3: COMPUTER-AIDED DESIGN, MANUFACTURING AND MANAGEMENT, 2011, : 247 - 253