Spatiotemporal Data Mining: A Computational Perspective

被引:120
|
作者
Shekhar, Shashi [1 ]
Jiang, Zhe [1 ]
Ali, Reem Y. [1 ]
Eftelioglu, Emre [1 ]
Tang, Xun [1 ]
Gunturi, Venkata M. V. [2 ]
Zhou, Xun [3 ]
机构
[1] Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA
[2] IIIT Delhi Okhla, Indraprastha Inst Informat Technol, Dept Comp Sci & Engn, New Delhi 110020, India
[3] Univ Iowa, Dept Management Sci, Iowa City, IA 52242 USA
基金
美国国家科学基金会;
关键词
spatiotemporal data mining; survey; review; spatiotemporal statistics; spatiotemporal patterns; CORRELATION IMAGE-ANALYSIS; SPATIAL DATA; OUTLIER DETECTION; MODEL; PATTERNS; ALGORITHMS; DATABASES;
D O I
10.3390/ijgi4042306
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Explosive growth in geospatial and temporal data as well as the emergence of new technologies emphasize the need for automated discovery of spatiotemporal knowledge. Spatiotemporal data mining studies the process of discovering interesting and previously unknown, but potentially useful patterns from large spatiotemporal databases. It has broad application domains including ecology and environmental management, public safety, transportation, earth science, epidemiology, and climatology. The complexity of spatiotemporal data and intrinsic relationships limits the usefulness of conventional data science techniques for extracting spatiotemporal patterns. In this survey, we review recent computational techniques and tools in spatiotemporal data mining, focusing on several major pattern families: spatiotemporal outlier, spatiotemporal coupling and tele-coupling, spatiotemporal prediction, spatiotemporal partitioning and summarization, spatiotemporal hotspots, and change detection. Compared with other surveys in the literature, this paper emphasizes the statistical foundations of spatiotemporal data mining and provides comprehensive coverage of computational approaches for various pattern families. We also list popular software tools for spatiotemporal data analysis. The survey concludes with a look at future research needs.
引用
收藏
页码:2306 / 2338
页数:33
相关论文
共 50 条
  • [21] Data Mining Based on Computational Intelligence
    WANG Yuan-zhen 1
    2.School of Computer Science and Technology
    [J]. Wuhan University Journal of Natural Sciences, 2005, (02) : 371 - 374
  • [22] Computational Intelligence and Data Mining in Sports
    Fister, Iztok
    Fister, Iztok, Jr.
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (06):
  • [23] A Novel Approach for Mining Spatiotemporal Explicit and Implicit Information in Multiscale Spatiotemporal Data
    Wang, Jianfei
    Cao, Wen
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2023, 12 (07)
  • [24] Spatial Data Mining: A Perspective of Big Data
    Wang, Shuliang
    Yuan, Hanning
    [J]. INTERNATIONAL JOURNAL OF DATA WAREHOUSING AND MINING, 2014, 10 (04) : 50 - 70
  • [25] Data mining through data visualisation: Computational intelligence
    AbdulRahman, R. Alazmi
    AbdulAziz, R. Alazmi
    [J]. ELECTRONICS AND COMMUNICATIONS: PROCEEDINGS OF THE 7TH WSEAS INTERNATIONAL CONFERENCE ON ELECTRONICS, HARDWARE, WIRELESS AND OPTICAL COMMUNICATIONS (EHAC '08), 2008, : 15 - 15
  • [26] Mining Developing Trends of Dynamic Spatiotemporal Data Streams
    Meng, Yu
    Dunham, Margaret H.
    [J]. JOURNAL OF COMPUTERS, 2006, 1 (03) : 43 - 50
  • [27] Mining multivariate association patterns from spatiotemporal data
    Chen, Xin-Bao
    Li, Song-Nian
    Zhu, Jian-Jun
    Chen, Jian-Qun
    [J]. Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 2011, 42 (01): : 106 - 114
  • [28] Congestion Prediction for Urban Areas by Spatiotemporal Data Mining
    Wang, LiHua
    Zhou, Zijun
    [J]. 2017 INTERNATIONAL CONFERENCE ON CYBER-ENABLED DISTRIBUTED COMPUTING AND KNOWLEDGE DISCOVERY (CYBERC), 2017, : 290 - 297
  • [29] A Binary Granular Algorithm for Spatiotemporal Meteorological Data Mining
    Wang, Hongxia
    Yang, Jason
    Wang, Zhiwei
    Wang, Qiliang
    [J]. PROCEEDINGS 2015 SECOND IEEE INTERNATIONAL CONFERENCE ON SPATIAL DATA MINING AND GEOGRAPHICAL KNOWLEDGE SERVICES (ICSDM 2015), 2015, : 5 - 11
  • [30] Spatiotemporal data mining: a survey on challenges and open problems
    Hamdi, Ali
    Shaban, Khaled
    Erradi, Abdelkarim
    Mohamed, Amr
    Rumi, Shakila Khan
    Salim, Flora D.
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (02) : 1441 - 1488