Few-shot learning for skin lesion image classification

被引:0
|
作者
Xue-Jun Liu
Kai-li Li
Hai-ying Luan
Wen-hui Wang
Zhao-yu Chen
机构
[1] Beijing Institute of Petrochemical Technology,School of Information Engineering
[2] Beijing Research Institute of Automation for Machinery Industry Co.,Fluid Power and Automotive Equipment Center
[3] Ltd,undefined
来源
关键词
Image processing; Small sample learning; Relational network; Metric learning; Convolutional neural network;
D O I
暂无
中图分类号
学科分类号
摘要
The mortality of skin pigmented malignant lesions is very high, especially melanoma. Due to the limitation of marking means, the large-scale annotation data of skin lesions are generally more difficult to obtain. When the deep learning model is trained on a small dataset, its generalization performance is limited. Using prior knowledge to expand small sample data is a general model method of learning classification, which is difficult to deal with complex skin problems. On the basis of a small amount of labeled skin lesion image data, this paper uses the improved Relational Network for measurement learning to realize the classification of skin disease. This method uses relative position network (RPN) and relative mapping network (RMN), in which RPN captures and extracts feature information by attention mechanism, and RMN obtains the similarity of image classification by weighted sum of attention mapping distance. The average accuracy of classification is 85% on the public ISIC melanoma dataset, and the results show the effectiveness and applicability of the method.
引用
收藏
页码:4979 / 4990
页数:11
相关论文
共 50 条
  • [41] Few-Shot Hyperspectral Image Classification With Self-Supervised Learning
    Li, Zhaokui
    Guo, Hui
    Chen, Yushi
    Liu, Cuiwei
    Du, Qian
    Fang, Zhuoqun
    Wang, Yan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [42] Generalized few-shot learning for crop hyperspectral image precise classification
    Yuan, Hao-tian
    Huang, Ke-kun
    Duan, Jie-li
    Lai, Li-qian
    Yu, Jia-xiang
    Huang, Chao-wei
    Yang, Zhou
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2024, 227
  • [43] Unsupervised Few-Shot Image Classification by Learning Features into Clustering Space
    Li, Shuo
    Liu, Fang
    Hao, Zehua
    Zhao, Kaibo
    Jiao, Licheng
    COMPUTER VISION, ECCV 2022, PT XXXI, 2022, 13691 : 420 - 436
  • [44] Learning a Latent Space with Triplet Network for Few-Shot Image Classification
    Wu, Jiaying
    Hu, Jinglu
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 5038 - 5044
  • [45] FEW-SHOT HYPERSPECTRAL IMAGE CLASSIFICATION THROUGH MULTITASK TRANSFER LEARNING
    Qu, Ying
    Baghbaderani, Razieh Kaviani
    Qi, Hairong
    2019 10TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING - EVOLUTION IN REMOTE SENSING (WHISPERS), 2019,
  • [46] Few-Shot Learning Network for Out-of-Distribution Image Classification
    Osman I.I.
    Shehata M.S.
    IEEE Transactions on Artificial Intelligence, 2023, 4 (06): : 1579 - 1591
  • [47] Rare Data Image Classification System Using Few-Shot Learning
    Lee, Juhyeok
    Kim, Mihui
    ELECTRONICS, 2024, 13 (19)
  • [48] Domain Adapted Few-Shot Learning for Breast Histopathological Image Classification
    Mohanta, Anindita
    Roy, Sourav Dey
    Nath, Niharika
    Bhowmik, Mrinal Kanti
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2023, 2023, 14301 : 407 - 417
  • [49] Refined Prototypical Contrastive Learning for Few-Shot Hyperspectral Image Classification
    Liu, Quanyong
    Peng, Jiangtao
    Ning, Yujie
    Chen, Na
    Sun, Weiwei
    Du, Qian
    Zhou, Yicong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [50] Learning feature alignment and dual correlation for few-shot image classification
    Huang, Xilang
    Choi, Seon Han
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2024, 9 (02) : 303 - 318