Few-shot learning for skin lesion image classification

被引:0
|
作者
Xue-Jun Liu
Kai-li Li
Hai-ying Luan
Wen-hui Wang
Zhao-yu Chen
机构
[1] Beijing Institute of Petrochemical Technology,School of Information Engineering
[2] Beijing Research Institute of Automation for Machinery Industry Co.,Fluid Power and Automotive Equipment Center
[3] Ltd,undefined
来源
关键词
Image processing; Small sample learning; Relational network; Metric learning; Convolutional neural network;
D O I
暂无
中图分类号
学科分类号
摘要
The mortality of skin pigmented malignant lesions is very high, especially melanoma. Due to the limitation of marking means, the large-scale annotation data of skin lesions are generally more difficult to obtain. When the deep learning model is trained on a small dataset, its generalization performance is limited. Using prior knowledge to expand small sample data is a general model method of learning classification, which is difficult to deal with complex skin problems. On the basis of a small amount of labeled skin lesion image data, this paper uses the improved Relational Network for measurement learning to realize the classification of skin disease. This method uses relative position network (RPN) and relative mapping network (RMN), in which RPN captures and extracts feature information by attention mechanism, and RMN obtains the similarity of image classification by weighted sum of attention mapping distance. The average accuracy of classification is 85% on the public ISIC melanoma dataset, and the results show the effectiveness and applicability of the method.
引用
收藏
页码:4979 / 4990
页数:11
相关论文
共 50 条
  • [31] Decision fusion for few-shot image classification
    Yuan, Tianhao
    Liu, Weifeng
    Yan, Fei
    Liu, Baodi
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2023, 12 (02)
  • [32] A Image Enhancement Method for Few-shot Classification
    Wu, Benze
    Wu, Yirui
    Wan, Shaohua
    2021 IEEE 19TH INTERNATIONAL CONFERENCE ON EMBEDDED AND UBIQUITOUS COMPUTING (EUC 2021), 2021, : 201 - 207
  • [33] Multiscale attention for few-shot image classification
    Zhou, Tong
    Dong, Changyin
    Song, Junshu
    Zhang, Zhiqiang
    Wang, Zhen
    Chang, Bo
    Chen, Dechun
    COMPUTATIONAL INTELLIGENCE, 2024, 40 (02)
  • [34] ICCL: Independent and Correlative Correspondence Learning for few-shot image classification
    Zheng, Zijun
    Wu, Heng
    Lv, Laishui
    Ye, Hailiang
    Zhang, Changchun
    Yu, Gaohang
    KNOWLEDGE-BASED SYSTEMS, 2023, 266
  • [35] Few-Shot Hyperspectral Image Classification With Deep Fuzzy Metric Learning
    Tang, Haojin
    Zhang, Chao
    Tang, Dong
    Lin, Xin
    Yang, Xiaofei
    Xie, Weixin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
  • [36] Few-shot Fish Image Generation and Classification
    Guo, Zonghui
    Zhang, Liqiang
    Jiang, Yufeng
    Niu, Wenjie
    Gu, Zhaorui
    Zheng, Haiyong
    Wang, Guoyu
    Zheng, Bing
    GLOBAL OCEANS 2020: SINGAPORE - U.S. GULF COAST, 2020,
  • [37] Experiments in cross-domain few-shot learning for image classification
    Wang, Hongyu
    Gouk, Henry
    Fraser, Huon
    Frank, Eibe
    Pfahringer, Bernhard
    Mayo, Michael
    Holmes, Geoffrey
    JOURNAL OF THE ROYAL SOCIETY OF NEW ZEALAND, 2023, 53 (01) : 169 - 191
  • [38] Prototype Bayesian Meta-Learning for Few-Shot Image Classification
    Fu, Meijun
    Wang, Xiaomin
    Wang, Jun
    Yi, Zhang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, : 1 - 15
  • [39] Few-Shot Learning With Mutual Information Enhancement for Hyperspectral Image Classification
    Zhang, Qiaoli
    Peng, Jiangtao
    Sun, Weiwei
    Liu, Quanyong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [40] MetaDelta: A Meta-Learning System for Few-shot Image Classification
    Chen, Yudong
    Guan, Chaoyu
    Wei, Zhikun
    Wang, Xin
    Zhu, Wenwu
    AAAI WORKSHOP ON META-LEARNING AND METADL CHALLENGE, VOL 140, 2021, 140 : 17 - 28