Tensor Renormalization Group at Low Temperatures: Discontinuity Fixed Point

被引:0
|
作者
Tom Kennedy
Slava Rychkov
机构
[1] University of Arizona,Department of Mathematics
[2] Institut des Hautes Études Scientifiques,undefined
来源
Annales Henri Poincaré | 2024年 / 25卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
To the memory of Krzysztof Gawȩdzki, a pioneer of rigorous renormalization group studiesWe continue our study of rigorous renormalization group (RG) maps for tensor networks that was begun in Kennedy and Rychkov (J Stat Phys Ser, 187 (3), 33, 2022). In this paper, we construct a rigorous RG map for 2D tensor networks whose domain includes tensors that represent the 2D Ising model at low temperatures with a magnetic field h. We prove that the RG map has two stable fixed points, corresponding to the two ground states, and one unstable fixed point which is an example of a discontinuity fixed point. For the Ising model at low temperatures, the RG map flows to one of the stable fixed points if h≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h \ne 0$$\end{document}, and to the discontinuity fixed point if h=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h=0$$\end{document}. In addition to the nearest neighbor and magnetic field terms in the Hamiltonian, we can include small terms that need not be spin-flip invariant. In this case, we prove there is a critical value hc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_c$$\end{document} of the field (which depends on these additional small interactions and the temperature) such that the RG map flows to the discontinuity fixed point if h=hc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h=h_c$$\end{document} and to one of the stable fixed points otherwise. We use our RG map to give a new proof of previous results on the first-order transition, namely, that the free energy is analytic for h≠hc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h \ne h_c$$\end{document}, and the magnetization is discontinuous at h=hc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h = h_c$$\end{document}. The construction of our low-temperature RG map, in particular the disentangler, is surprisingly very similar to the construction of the map in Kennedy and Rychkov (2022) for the high-temperature phase. We also give a pedagogical discussion of some general rigorous transformations for infinite-dimensional tensor networks and an overview of the proof of stability of the high-temperature fixed point for the RG map in Kennedy and Rychkov (2022).
引用
收藏
页码:773 / 841
页数:68
相关论文
共 50 条