Tensor renormalization group for fermions

被引:0
|
作者
Akiyama, Shinichiro [1 ,2 ]
Meurice, Yannick [3 ]
Sakai, Ryo [4 ]
机构
[1] Univ Tsukuba, Ctr Computat Sci, Tsukuba, Ibaraki 3058577, Japan
[2] Univ Tokyo, Grad Sch Sci, Bunkyo Ku, Tokyo 1130033, Japan
[3] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA
[4] Jij Inc, Bunkyo Ku, Tokyo 1130031, Japan
关键词
tensor networks; lattice gauge theory; relativistic lattice fermions; Fermi Hubbard model; Grassmann path integrals; sign problems; LATTICE SCHWINGER MODEL; FINITE-DENSITY; FIELD THEORY; NJL-MODEL; MATRIX; TRANSITION; APPROXIMATION; QCD;
D O I
10.1088/1361-648X/ad4760
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We review the basic ideas of the tensor renormalization group method and show how they can be applied for lattice field theory models involving relativistic fermions and Grassmann variables in arbitrary dimensions. We discuss recent progress for entanglement filtering, loop optimization, bond-weighting techniques and matrix product decompositions for Grassmann tensor networks. The new methods are tested with two-dimensional Wilson-Majorana fermions and multi-flavor Gross-Neveu models. We show that the methods can also be applied to the fermionic Hubbard model in 1+1 and 2+1 dimensions.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] Boundary tensor renormalization group
    Iino, Shumpei
    Morita, Satoshi
    Kawashima, Naoki
    PHYSICAL REVIEW B, 2019, 100 (03)
  • [2] Anisotropic tensor renormalization group
    Adachi, Daiki
    Okubo, Tsuyoshi
    Todo, Synge
    PHYSICAL REVIEW B, 2020, 102 (05)
  • [3] Holographic renormalization group with fermions and form fields
    Kalkkinen, J
    Martelli, D
    NUCLEAR PHYSICS B, 2001, 596 (1-2) : 415 - 438
  • [4] Renormalization group for non-relativistic fermions
    Shankar, R.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 369 (1946): : 2612 - 2624
  • [5] BLOCK RENORMALIZATION-GROUP FOR EUCLIDEAN FERMIONS
    BALABAN, T
    OCARROLL, M
    SCHOR, R
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 122 (02) : 233 - 247
  • [6] RENORMALIZATION-GROUP APPROACH TO INTERACTING FERMIONS
    SHANKAR, R
    REVIEWS OF MODERN PHYSICS, 1994, 66 (01) : 129 - 192
  • [7] Tensor renormalization group centered about a core tensor
    Lan, Wangwei
    Evenbly, Glen
    PHYSICAL REVIEW B, 2019, 100 (23)
  • [8] Spectroscopy with the tensor renormalization group method
    Az-zahra, Fathiyya Izzatun
    Takeda, Shinji
    Yamazaki, Takeshi
    PHYSICAL REVIEW D, 2024, 110 (03)
  • [9] Tensor networks and the numerical renormalization group
    Weichselbaum, Andreas
    PHYSICAL REVIEW B, 2012, 86 (24)
  • [10] Thermoelectric power of heavy fermions by renormalization group calculations
    Costi, T.A., 1600, Publ by Elsevier Science Publishers B.V., Amsterdam, Netherlands (199-20):