Regulation of the mechanical properties of thermoplastic carbon fiber-reinforced plastics by changing their production conditions and surface treatment of the fibers

被引:0
|
作者
P. I. Bashtannik
A. I. Kabak
V. D. Zinuhov
机构
来源
关键词
Friction Coefficient; Polymer Matrix; Wear Resistance; Carbon Fiber; Flange;
D O I
暂无
中图分类号
学科分类号
摘要
The effect of technological parameters of processing and surface treatment of carbon fibers on the mechanical properties of carbon fiber-reinforced plastics (CFRPs) was investigated. The copolymer of 1,3,5-trioxane with 1,3-dioxolane was used as the polymer matrix, and medium-modulus hydrated cellulose Ural LO-24 carbon fibers served as the reinforcing filler. The polymer matrix was mixed with the carbon fibers by the method of combined extrusion. The dependence of the mechanical properties of CFRPs on the technological parameters of screw-disk extrusion was studied. It was found that the properties of the composites were greatly affected by the size of the working disk gap, the disk rotation rate, and the temperature in the zone of normal stresses. The surface of the carbon fibers was activated with atmospheric oxygen in the temperature range of 450–600°C, with mass loss of the fibers no greater than 3–4%. A 30–40% increase in the mechanical properties of the CFRPs was achieved. A decrease in the melt index of the 1,3,5-trioxane copolymer with 1,3-dioxolane reinforced with oxidized carbon fibers was observed, which should be taken into account in processing the composites into products. Introduction of carbon fibers in the 1,3,5-trioxane copolymer with 1,3-dioxolane allows us to increase the wear resistance and decrease the friction coefficient, which makes it possibile to use these materials in the friction units of machines and mechanisms, such as plain bearings, gears, and flange packings.
引用
收藏
页码:483 / 488
页数:5
相关论文
共 50 条
  • [21] Improved mechanical properties of carbon fiber-reinforced epoxy composites by growing carbon black on carbon fiber surface
    Dong, Jidong
    Jia, Chuyuan
    Wang, Mingqiang
    Fang, Xiaojiao
    Wei, Huawei
    Xie, Huaquan
    Zhang, Tong
    He, Jinmei
    Jiang, Zaixing
    Huang, Yudong
    COMPOSITES SCIENCE AND TECHNOLOGY, 2017, 149 : 75 - 80
  • [22] Effect of Fiber Surface Modification on the Interfacial and Mechanical Properties of Kenaf Fiber-Reinforced Thermoplastic and Thermosetting Polymer Composites
    Cho, Donghwan
    Lee, Hyun Seok
    Han, Seong Ok
    COMPOSITE INTERFACES, 2009, 16 (7-9) : 711 - 729
  • [23] Mechanical and Thermophysical Properties of Carbon Fiber-Reinforced Polyethersulfone
    Torokhov, Valerii G.
    Chukov, Dilyus, I
    Tcherdyntsev, Victor V.
    Sherif, Galal
    Zadorozhnyy, Mikhail Y.
    Stepashkin, Andrey A.
    Larin, Ilya I.
    Medvedeva, Elena, V
    POLYMERS, 2022, 14 (14)
  • [24] MECHANICAL-PROPERTIES OF CARBON FIBER-REINFORCED GLASSES
    HEGELER, H
    BRUCKNER, R
    JOURNAL OF MATERIALS SCIENCE, 1992, 27 (07) : 1901 - 1907
  • [25] Effect of alkali treatment on mechanical and thermal properties of Kenaf fiber-reinforced thermoplastic polyurethane composite
    El-Shekeil, Y. A.
    Sapuan, S. M.
    Khalina, A.
    Zainudin, E. S.
    Al-Shuja'a, O. M.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2012, 109 (03) : 1435 - 1443
  • [26] Effect of alkali treatment on mechanical and thermal properties of Kenaf fiber-reinforced thermoplastic polyurethane composite
    Y. A. El-Shekeil
    S. M. Sapuan
    A. Khalina
    E. S. Zainudin
    O. M. Al-Shuja’a
    Journal of Thermal Analysis and Calorimetry, 2012, 109 : 1435 - 1443
  • [27] Mechanical Properties of Carbon Fiber-Reinforced Polypropylene Composites
    Yunus, R.
    Zahari, N. H.
    Salleh, M. A. M.
    Ibrahim, N. A.
    COMPOSITE SCIENCE AND TECHNOLOGY, PTS 1 AND 2, 2011, 471-472 : 652 - +
  • [28] Comprehensive Review of the Properties and Modifications of Carbon Fiber-Reinforced Thermoplastic Composites
    Alshammari, Basheer A.
    Alsuhybani, Mohammed S.
    Almushaikeh, Alaa M.
    Alotaibi, Bander M.
    Alenad, Asma M.
    Alqahtani, Naif B.
    Alharbi, Abdullah G.
    POLYMERS, 2021, 13 (15)