Lusin approximation for horizontal curves in step 2 Carnot groups

被引:0
|
作者
Enrico Le Donne
Gareth Speight
机构
[1] University of Jyvaskyla,
[2] University of Cincinnati,undefined
关键词
28C15; 49Q15; 43A80;
D O I
暂无
中图分类号
学科分类号
摘要
A Carnot group G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {G}$$\end{document} admits Lusin approximation for horizontal curves if for any absolutely continuous horizontal curve γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} in G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {G}$$\end{document} and ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon >0$$\end{document}, there is a C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document} horizontal curve Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} such that Γ=γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma =\gamma $$\end{document} and Γ′=γ′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma '=\gamma '$$\end{document} outside a set of measure at most ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}. We verify this property for free Carnot groups of step 2 and show that it is preserved by images of Lie group homomorphisms preserving the horizontal layer. Consequently, all step 2 Carnot groups admit Lusin approximation for horizontal curves.
引用
收藏
相关论文
共 50 条
  • [41] Universal differentiability sets in Carnot groups of arbitrarily high step
    Pinamonti, Andrea
    Speight, Gareth
    ISRAEL JOURNAL OF MATHEMATICS, 2020, 240 (01) : 445 - 502
  • [42] Universal differentiability sets in Carnot groups of arbitrarily high step
    Andrea Pinamonti
    Gareth Speight
    Israel Journal of Mathematics, 2020, 240 : 445 - 502
  • [43] SINGULAR INTEGRALS ON C1,α REGULAR CURVES IN CARNOT GROUPS
    Chousionis, Vasileios
    Li, Sean
    Zimmerman, Scott
    JOURNAL D ANALYSE MATHEMATIQUE, 2022, 146 (01): : 299 - 326
  • [44] THE DISTRIBUTIONAL DIVERGENCE OF HORIZONTAL VECTOR FIELDS VANISHING AT INFINITY ON CARNOT GROUPS
    Baldi, A.
    Montefalcone, F.
    MATEMATICHE, 2023, 78 (01): : 239 - 271
  • [45] Escape from compact sets of normal curves in subfinsler Carnot groups
    Le Donne, Enrico
    Paddeu, Nicola
    ESAIM - Control, Optimisation and Calculus of Variations, 2024, 30
  • [46] Singular integrals on C1,α regular curves in Carnot groups
    Vasileios Chousionis
    Sean Li
    Scott Zimmerman
    Journal d'Analyse Mathématique, 2022, 146 : 299 - 326
  • [47] Intrinsic diophantine approximation in Carnot groups and in the Siegel model of the Heisenberg group
    Anton Lukyanenko
    Joseph Vandehey
    Monatshefte für Mathematik, 2020, 192 : 651 - 676
  • [48] Intrinsic diophantine approximation in Carnot groups and in the Siegel model of the Heisenberg group
    Lukyanenko, Anton
    Vandehey, Joseph
    MONATSHEFTE FUR MATHEMATIK, 2020, 192 (03): : 651 - 676
  • [49] C2-Lusin approximation of strongly convex functions
    Azagra, Daniel
    Drake, Marjorie
    Hajlasz, Piotr
    INVENTIONES MATHEMATICAE, 2024, 236 (03) : 1055 - 1082
  • [50] Coarea Formula for Functions on 2-Step Carnot Groups with Sub-Lorentzian Structure
    M. B. Karmanova
    Doklady Mathematics, 2020, 101 : 129 - 131