SINGULAR INTEGRALS ON C1,α REGULAR CURVES IN CARNOT GROUPS

被引:1
|
作者
Chousionis, Vasileios [1 ]
Li, Sean [1 ]
Zimmerman, Scott [2 ]
机构
[1] Univ Connecticut, Dept Math, 341 Mansfield Rd U1009, Storrs, CT 06269 USA
[2] Ohio State Univ Marion, Dept Math, Marion, OH 43302 USA
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2022年 / 146卷 / 01期
关键词
RIESZ TRANSFORM; RECTIFIABILITY; OPERATOR;
D O I
10.1007/s11854-021-0194-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be any Carnot group. We prove that if a convolution type singular integral associated with a 1-dimensional Calderon-Zygmund kernel is L-2-bounded on horizontal lines, with uniform bounds, then it is bounded in L-p, p is an element of (1, infinity), on any compact C-1,C-alpha, alpha is an element of (0, 1], regular curve in G.
引用
收藏
页码:299 / 326
页数:28
相关论文
共 50 条