A method for fuzzy time series forecasting based on interval index number and membership value using fuzzy c-means clustering

被引:0
|
作者
Kiran Bisht
Arun Kumar
机构
[1] G. B. Pant University of Agriculture and Technology,Department of Mathematics, Statistics and Computer Science
来源
Evolutionary Intelligence | 2023年 / 16卷
关键词
Fuzzy time series forecasting (FTSF); Fuzzy c-means clustering (FCM); Number of intervals (NOIs); Support vector machine (SVM); Multilayer perceptron (MLP);
D O I
暂无
中图分类号
学科分类号
摘要
Fuzzy time series forecasting methods are very popular among researchers for predicting future values as they are not based on the strict assumptions of traditional forecasting methods. Non-stochastic methods of fuzzy time series forecasting are preferred by the researchers over the years because these methods are capable to deal with real life uncertainties and provide significant forecast. There are generally, four factors that determine the performance of the forecasting method (1) number of intervals (NOIs) and length of intervals to partition universe of discourse (UOD), (2) fuzzification rules or feature representation of crisp time series, (3) method of establishing fuzzy logic rule (FLRs), (4) defuzzification rule to get crisp forecasted value. Considering, first two factors to improve the forecasting accuracy, we proposed a modified non-stochastic method of fuzzy time series forecasting in which interval index number and membership value are used as input features to predict future value. We suggested a rounding-off range and large step-size method to find the optimal NOIs and used fuzzy c-means clustering process to divide UOD into intervals of unequal length. We implement two techniques (1) regression by support vector machine and (2) neural network by multilayer perceptron to establish FLRs. To test our proposed method by both techniques we conduct a simulated study on eight widely used real time series and compare the performance with some recently developed models. Two performance measures RSME and SMAPE are used for performance analysis and observed better forecasting accuracy by the proposed model.
引用
收藏
页码:285 / 297
页数:12
相关论文
共 50 条
  • [41] Fuzzy C-means method for clustering microarray data
    Dembélé, D
    Kastner, P
    BIOINFORMATICS, 2003, 19 (08) : 973 - 980
  • [42] TSK Fuzzy Model Using Kernel-Based Fuzzy C-Means Clustering
    Cai, Qianfeng
    Liu, Wei
    2009 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, 2009, : 308 - 312
  • [43] Fuzzy model generation using Subtractive and Fuzzy C-Means clustering
    Lalit Mohan Goyal
    Mamta Mittal
    Jasleen Kaur Sethi
    CSI Transactions on ICT, 2016, 4 (2-4) : 129 - 133
  • [44] FRCM: A fuzzy rough c-means clustering method
    Yu, Bin
    Zheng, Zijian
    Cai, Mingjie
    Pedrycz, Witold
    Ding, Weiping
    FUZZY SETS AND SYSTEMS, 2024, 480
  • [45] Image Enhancement Method based on an Improved Fuzzy C-Means Clustering
    Yang, Libao
    Zenian, Suzelawati
    Zakaria, Rozaimi
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (08) : 855 - 859
  • [46] A fuzzy clustering model of data and fuzzy c-means
    Nascimento, S
    Mirkin, B
    Moura-Pires, F
    NINTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2000), VOLS 1 AND 2, 2000, : 302 - 307
  • [47] Image segmentation method based on pyramid Fuzzy C-Means clustering and region fuzzy mergence
    Pei, Jihong
    Yang, Xuan
    Hongwai Yu Haomibo Xuebao/Journal of Infrared and Millimeter Waves, 1999, 18 (01): : 83 - 88
  • [48] Membership functions in the fuzzy C-means algorithm
    Flores-Sintas, A
    Cadenas, JM
    Martin, F
    FUZZY SETS AND SYSTEMS, 1999, 101 (01) : 49 - 58
  • [49] Mixed fuzzy C-means clustering
    Demirhan, Haydar
    INFORMATION SCIENCES, 2025, 690
  • [50] Fuzzy time series forecasting method based on Gustafson-Kessel fuzzy clustering
    Egrioglu, E.
    Aladag, C. H.
    Yolcu, U.
    Uslu, V. R.
    Erilli, N. A.
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (08) : 10355 - 10357