Self adaptive inertial subgradient extragradient algorithms for solving pseudomonotone variational inequality problems

被引:0
|
作者
Duong Viet Thong
Dang Van Hieu
Themistocles M. Rassias
机构
[1] Ton Duc Thang University,Applied Analysis Research Group, Faculty of Mathematics and Statistics
[2] College of Air Force,Department of Mathematics
[3] National Technical University of Athens,Department of Mathematics
来源
Optimization Letters | 2020年 / 14卷
关键词
Subgradient extragradient method; Inertial method; Variational inequality; Pseudomonotone mapping; Lipschitz continuity;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, two new algorithms are introduced for solving a pseudomontone variational inequality problem with a Lipschitz condition in a Hilbert space. The algorithms are constructed around three methods: the subgradient extragradient method, the inertial method and the viscosity method. With a new stepsize rule is incorporated, the algorithms work without any information of Lipschitz constant of operator. The weak convergence of the first algorithm is established, while the second one is strongly convergent which comes from the viscosity method. In order to show the computational effectiveness of our algorithms, some numerical results are provided.
引用
下载
收藏
页码:115 / 144
页数:29
相关论文
共 50 条
  • [31] A NEW DOUBLE INERTIAL SUBGRADIENT EXTRAGRADIENT METHOD FOR SOLVING QUASIMONOTONE VARIATIONAL INEQUALITY PROBLEMS
    George, R.
    Ofem, A.E.
    Mebawondu, A.A.
    Akutsah, F.
    Alshammari, F.
    Narain, O.K.
    Journal of Industrial and Management Optimization, 2025, 21 (03) : 2074 - 2090
  • [32] Strong convergence of inertial subgradient extragradient algorithm for solving pseudomonotone equilibrium problems
    Thong, Duong Viet
    Cholamjiak, Prasit
    Rassias, Michael T.
    Cho, Yeol Je
    OPTIMIZATION LETTERS, 2022, 16 (02) : 545 - 573
  • [33] Strong convergence of inertial subgradient extragradient algorithm for solving pseudomonotone equilibrium problems
    Duong Viet Thong
    Prasit Cholamjiak
    Michael T. Rassias
    Yeol Je Cho
    Optimization Letters, 2022, 16 : 545 - 573
  • [34] Projection subgradient algorithms for solving pseudomonotone variational inequalities and pseudomonotone equilibrium problems
    Guo, Wenping
    Yu, Youli
    Zhu, Zhichuan
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2021, 83 (03): : 75 - 86
  • [35] PROJECTION SUBGRADIENT ALGORITHMS FOR SOLVING PSEUDOMONOTONE VARIATIONAL INEQUALITIES AND PSEUDOMONOTONE EQUILIBRIUM PROBLEMS
    Guo, Wenping
    Yu, Youli
    Zhu, Zhichuan
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2021, 83 (03): : 75 - 86
  • [36] A self-adaptive stochastic subgradient extragradient algorithm for the stochastic pseudomonotone variational inequality problem with application
    Shenghua Wang
    Hongyuan Tao
    Rongguang Lin
    Yeol Je Cho
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [37] Double inertial extragradient algorithms for solving variational inequality problems with convergence analysis
    Pakkaranang, Nuttapol
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (14) : 11642 - 11669
  • [38] A self-adaptive stochastic subgradient extragradient algorithm for the stochastic pseudomonotone variational inequality problem with application
    Wang, Shenghua
    Tao, Hongyuan
    Lin, Rongguang
    Cho, Yeol Je
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (04):
  • [39] Self-adaptive subgradient extragradient method with inertial modification for solving monotone variational inequality problems and quasi-nonexpansive fixed point problems
    Tian, Ming
    Tong, Mengying
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [40] Self-adaptive subgradient extragradient method with inertial modification for solving monotone variational inequality problems and quasi-nonexpansive fixed point problems
    Ming Tian
    Mengying Tong
    Journal of Inequalities and Applications, 2019