Strong convergence of inertial subgradient extragradient algorithm for solving pseudomonotone equilibrium problems

被引:8
|
作者
Thong, Duong Viet [1 ]
Cholamjiak, Prasit [2 ]
Rassias, Michael T. [3 ]
Cho, Yeol Je [4 ,5 ]
机构
[1] Thu Dau Mot Univ, Div Appl Math, Thu Dau Mot, Binh Duong Prov, Vietnam
[2] Univ Phayao, Sch Sci, Phayao 56000, Thailand
[3] Univ Zurich, Inst Math, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[4] Gyeongsang Natl Univ, Dept Math Educ, Jinju 52828, South Korea
[5] China Med Univ, Ctr Gen Educ, Taichung 40402, Taiwan
关键词
Pseudomonotonicity; Lipchitz-type continuity; Equilibrium problem; Subgradient extragradient method; Inertial effect; R-linear convergence rate; VARIATIONAL INEQUALITY; PROXIMAL METHOD; LINESEARCH;
D O I
10.1007/s11590-021-01734-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we propose a new modified subgradient extragradient method for solving equilibrium problems involving pseudomonotone and Lipchitz-type bifunctions in Hilbert spaces. We establish the strong convergence of the proposed method under several suitable conditions. In addition, the linear convergence is obained under strong pseudomonotonicity assumption. Our results generalize and extend some related results in the literature. Finally, we provide numerical experiments to illustrate the performance of the proposed algorithm.
引用
收藏
页码:545 / 573
页数:29
相关论文
共 50 条
  • [1] Strong convergence of inertial subgradient extragradient algorithm for solving pseudomonotone equilibrium problems
    Duong Viet Thong
    Prasit Cholamjiak
    Michael T. Rassias
    Yeol Je Cho
    [J]. Optimization Letters, 2022, 16 : 545 - 573
  • [2] An inertial subgradient extragradient algorithm extended to pseudomonotone equilibrium problems
    Yekini Shehu
    Olaniyi S. Iyiola
    Duong Viet Thong
    Nguyen Thi Cam Van
    [J]. Mathematical Methods of Operations Research, 2021, 93 : 213 - 242
  • [3] An inertial subgradient extragradient algorithm extended to pseudomonotone equilibrium problems
    Shehu, Yekini
    Iyiola, Olaniyi S.
    Thong, Duong Viet
    Van, Nguyen Thi Cam
    [J]. MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2021, 93 (02) : 213 - 242
  • [4] WEAK AND STRONG CONVERGENCE OF SUBGRADIENT EXTRAGRADIENT METHODS FOR PSEUDOMONOTONE EQUILIBRIUM PROBLEMS
    Dang Van Hieu
    [J]. COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 31 (04): : 879 - 893
  • [6] Inertial subgradient extragradient method for solving pseudomonotone equilibrium problems and fixed point problems in Hilbert spaces
    Xie, Zhongbing
    Cai, Gang
    Tan, Bing
    [J]. OPTIMIZATION, 2024, 73 (05) : 1329 - 1354
  • [7] AN INERTIAL SUBGRADIENT-EXTRAGRADIENT ALGORITHM FOR SOLVING PSEUDOMONOTONE VARIATIONAL INEQUALITIES
    Liu, Liya
    Petrusel, Adrian
    Qin, Xiaolong
    Yao, Jen-Chih
    [J]. FIXED POINT THEORY, 2022, 23 (02): : 533 - 555
  • [8] A strong convergence of modified subgradient extragradient method for solving bilevel pseudomonotone variational inequality problems
    Duong Viet Thong
    Dang Van Hieu
    [J]. OPTIMIZATION, 2020, 69 (06) : 1313 - 1334
  • [9] A new inertial condition on the subgradient extragradient method for solving pseudomonotone equilibrium problem
    Izuchukwu, Chinedu
    Ogwo, Grace Nnennaya
    Zinsou, Bertin
    [J]. Communications in Nonlinear Science and Numerical Simulation, 2024, 135
  • [10] Modified mildly inertial subgradient extragradient method for solving pseudomonotone equilibrium problems and nonexpansive fixed point problems
    Akutsah, Francis
    Mebawondu, Akindele Adebayo
    Ofem, Austine Efut
    George, Reny
    Nabwey, Hossam A.
    Narain, Ojen Kumar
    [J]. AIMS MATHEMATICS, 2024, 9 (07): : 17276 - 17290