Eigenvalues of the Laplacian with moving mixed boundary conditions: the case of disappearing Dirichlet region

被引:0
|
作者
Veronica Felli
Benedetta Noris
Roberto Ognibene
机构
[1] Università di Milano-Bicocca,Dipartimento di Matematica e Applicazioni
[2] Politecnico di Milano,Dipartimento di Matematica
关键词
35J25; 35P20; 35B25;
D O I
暂无
中图分类号
学科分类号
摘要
In this work we consider the homogeneous Neumann eigenvalue problem for the Laplacian on a bounded Lipschitz domain and a singular perturbation of it, which consists in prescribing zero Dirichlet boundary conditions on a small subset of the boundary. We first describe the sharp asymptotic behaviour of a perturbed eigenvalue, in the case in which it is converging to a simple eigenvalue of the limit Neumann problem. The first term in the asymptotic expansion turns out to depend on the Sobolev capacity of the subset where the perturbed eigenfunction is vanishing. Then we focus on the case of Dirichlet boundary conditions imposed on a subset which is scaling to a point; by a blow-up analysis for the capacitary potentials, we detect the vanishing order of the Sobolev capacity of such shrinking Dirichlet boundary portion.
引用
收藏
相关论文
共 50 条
  • [1] Eigenvalues of the Laplacian with moving mixed boundary conditions: the case of disappearing Dirichlet region
    Felli, Veronica
    Noris, Benedetta
    Ognibene, Roberto
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (01)
  • [2] Eigenvalues of the Laplacian with moving mixed boundary conditions: The case of disappearing Neumann region
    Felli, Veronica
    Noris, Benedetta
    Ognibene, Roberto
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 320 : 247 - 315
  • [3] SMALL EIGENVALUES OF THE WITTEN LAPLACIAN WITH DIRICHLET BOUNDARY CONDITIONS: THE CASE WITH CRITICAL POINTS ON THE BOUNDARY
    Le Peutrec, Dorian
    Nectoux, Boris
    [J]. ANALYSIS & PDE, 2021, 14 (08): : 2595 - 2651
  • [4] On low eigenvalues of the Laplacian with mixed boundary conditions
    Ashbaugh, Mark S.
    Chiacchio, Francesco
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (05) : 2544 - 2566
  • [5] EXTREMAL PROPERTIES OF SINGLE EIGENVALUES FOR LAPLACIAN WITH DIRICHLET BOUNDARY-CONDITIONS ON THE BALL
    TIURIN, KI
    [J]. VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1991, (04): : 33 - 37
  • [6] MIXED FINITE ELEMENT APPROXIMATION OF THE VECTOR LAPLACIAN WITH DIRICHLET BOUNDARY CONDITIONS
    Arnold, Douglas N.
    Falk, Richard S.
    Gopalakrishnan, Jay
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22 (09):
  • [7] The Laplacian with mixed Dirichlet-Neumann boundary conditions on Weyl chambers
    Stempak, Krzysztof
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 329 : 348 - 370
  • [8] MOVING DIRICHLET BOUNDARY CONDITIONS
    Altmann, Robert
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (06): : 1859 - 1876
  • [9] Principal eigenvalue of mixed problem for the fractional Laplacian: Moving the boundary conditions
    Leonori, Tommaso
    Medina, Maria
    Peral, Ireneo
    Primo, Ana
    Soria, Fernando
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (02) : 593 - 619
  • [10] EIGENVALUES OF THE LAPLACIAN WITH NEUMANN BOUNDARY-CONDITIONS
    GOTTLIEB, HPW
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1985, 26 (JAN): : 293 - 309