SMALL EIGENVALUES OF THE WITTEN LAPLACIAN WITH DIRICHLET BOUNDARY CONDITIONS: THE CASE WITH CRITICAL POINTS ON THE BOUNDARY

被引:3
|
作者
Le Peutrec, Dorian [1 ]
Nectoux, Boris [2 ]
机构
[1] Univ Orleans, Univ Tours, Inst Denis Poisson, CNRS, Orleans, France
[2] TU Wien, Inst Anal & Sci Comp, Vienna, Austria
来源
ANALYSIS & PDE | 2021年 / 14卷 / 08期
关键词
Witten Laplacian; overdamped Langevin dynamics; semiclassical analysis; metastability; spectral theory; Eyring-Kramers formulas; REVERSIBLE DIFFUSION-PROCESSES; MEAN EXIT TIME; SPECTRAL GAP; ASYMPTOTICS; DYNAMICS; METASTABILITY; SIMULATION; OPERATORS;
D O I
10.2140/apde.2021.14.2595
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give sharp asymptotic equivalents in the limit h -> 0 of the small eigenvalues of the Witten Laplacian, that is, the operator associated with the quadratic form psi is an element of H-0(1)(Omega)-> - h(2) integral(Omega)vertical bar del(e(1/hf)psi)(2)e(-2/hf), where (Omega) over bar = Omega boolean OR partial derivative Omega is an oriented C-infinity compact and connected Riemannian manifold with nonempty boundary partial derivative Omega and f : (Omega) over bar -> R is a C-infinity Morse function. The function f is allowed to admit critical points on @center dot, which is the main novelty of this work in comparison with the existing literature.
引用
收藏
页码:2595 / 2651
页数:58
相关论文
共 50 条