The covering radius of extreme binary 2-surjective codes

被引:0
|
作者
Gerzson Kéri
机构
[1] Hungarian Academy of Sciences,Computer and Automation Research Institute
来源
关键词
Covering radius; Divisibility of binomial coefficients; Factorization; Minimum distance; Surjective code; Uniform hypergraph; 94B75; 05C65; 05C70; 94B25;
D O I
暂无
中图分类号
学科分类号
摘要
The covering radius of binary 2-surjective codes of maximum length is studied in the paper. It is shown that any binary 2-surjective code of M codewords and of length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = {M-1 \choose \left\lfloor(M-2)/2\right\rfloor}$$\end{document} has covering radius \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{n}{2} - 1$$\end{document} if M − 1 is a power of 2, otherwise \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\lfloor\frac{n}{2}\right\rfloor$$\end{document} . Two different combinatorial proofs of this assertion were found by the author. The first proof, which is written in the paper, is based on an existence theorem for k-uniform hypergraphs where the degrees of its vertices are limited by a given upper bound. The second proof, which is omitted for the sake of conciseness, is based on Baranyai’s theorem on l-factorization of a complete k-uniform hypergraph.
引用
下载
收藏
页码:191 / 198
页数:7
相关论文
共 50 条
  • [41] On Upper Bounds for Minimum Distance and Covering Radius of Non-binary Codes
    Laihonen T.
    Litsyn S.
    Designs, Codes and Cryptography, 1998, 14 (1) : 71 - 80
  • [42] DO MOST BINARY LINEAR CODES ACHIEVE THE GOBLICK BOUND ON THE COVERING RADIUS
    DELSARTE, P
    PIRET, P
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1986, 32 (06) : 826 - 828
  • [43] ON THE STRUCTURE OF LINEAR CODES WITH COVERING RADIUS-2 AND RADIUS-3
    STRUIK, R
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (05) : 1406 - 1416
  • [44] ON THE COVERING RADIUS PROBLEM FOR CODES .1. BOUNDS ON NORMALIZED COVERING RADIUS
    KILBY, KE
    SLOANE, NJA
    SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1987, 8 (04): : 604 - 618
  • [45] On the covering radius of certain cyclic codes
    Moreno, O
    Castro, FN
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, PROCEEDINGS, 2003, 2643 : 129 - 138
  • [46] EXPLICIT CODES WITH LOW COVERING RADIUS
    PACH, J
    SPENCER, J
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1988, 34 (05) : 1281 - 1285
  • [47] ON THE COVERING RADIUS OF SOME MODULAR CODES
    Gupta, Manish K.
    Durairajan, Chinnappillai
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2014, 8 (02) : 129 - 137
  • [48] Linear codes with covering radius 3
    Davydov, Alexander A.
    Ostergard, Patric R. J.
    DESIGNS CODES AND CRYPTOGRAPHY, 2010, 54 (03) : 253 - 271
  • [49] A note on covering radius of MacDonald codes
    Bhandari, MC
    Durairajan, C
    ITCC 2003: INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: COMPUTERS AND COMMUNICATIONS, PROCEEDINGS, 2003, : 221 - 225
  • [50] SHORT CODES WITH A GIVEN COVERING RADIUS
    BRUALDI, RA
    PLESS, VS
    WILSON, RM
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1989, 35 (01) : 99 - 109