The covering radius of extreme binary 2-surjective codes

被引:0
|
作者
Gerzson Kéri
机构
[1] Hungarian Academy of Sciences,Computer and Automation Research Institute
来源
关键词
Covering radius; Divisibility of binomial coefficients; Factorization; Minimum distance; Surjective code; Uniform hypergraph; 94B75; 05C65; 05C70; 94B25;
D O I
暂无
中图分类号
学科分类号
摘要
The covering radius of binary 2-surjective codes of maximum length is studied in the paper. It is shown that any binary 2-surjective code of M codewords and of length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = {M-1 \choose \left\lfloor(M-2)/2\right\rfloor}$$\end{document} has covering radius \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{n}{2} - 1$$\end{document} if M − 1 is a power of 2, otherwise \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\lfloor\frac{n}{2}\right\rfloor$$\end{document} . Two different combinatorial proofs of this assertion were found by the author. The first proof, which is written in the paper, is based on an existence theorem for k-uniform hypergraphs where the degrees of its vertices are limited by a given upper bound. The second proof, which is omitted for the sake of conciseness, is based on Baranyai’s theorem on l-factorization of a complete k-uniform hypergraph.
引用
下载
收藏
页码:191 / 198
页数:7
相关论文
共 50 条
  • [21] ON THE COVERING RADIUS OF CODES
    GRAHAM, RL
    SLOANE, NJA
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1985, 31 (03) : 385 - 401
  • [22] LINEAR CODES WITH COVERING RADIUS-2 AND OTHER NEW COVERING CODES
    GABIDULIN, EM
    DAVYDOV, AA
    TOMBAK, LM
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (01) : 219 - 224
  • [23] CONSTRUCTIONS OF CODES WITH COVERING RADIUS-2
    DAVYDOV, AA
    LECTURE NOTES IN COMPUTER SCIENCE, 1992, 573 : 23 - 31
  • [24] Lower Bounds on the Covering Radius of the Non-Binary and Binary Irreducible Goppa Codes
    BezzateeV, Sergey V.
    Shekhunova, Natalia A.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (11) : 7171 - 7177
  • [25] Binary codes with covering radius one: Some new lower bounds
    Habsieger, L
    DISCRETE MATHEMATICS, 1997, 176 (1-3) : 115 - 130
  • [26] On the size of optimal binary codes of length 9 and covering radius 1
    Östergård, PRJ
    Blass, U
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (06) : 2556 - 2557
  • [27] On a class of binary linear completely transitive codes with arbitrary covering radius
    Rifa, J.
    Zinoviev, V. A.
    DISCRETE MATHEMATICS, 2009, 309 (16) : 5011 - 5016
  • [28] Covering Radius of Melas Codes
    Shi, Minjia
    Helleseth, Tor
    Ozbudak, Ferruh
    Sole, Patrick
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (07) : 4354 - 4364
  • [29] On the Covering Radius of MDS Codes
    Bartoli, Daniele
    Giulietti, Massimo
    Platoni, Irene
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (02) : 801 - 811
  • [30] On the covering radius of small codes
    Kéri, G
    Östergård, PRJ
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2003, 40 (1-2) : 243 - 256