Non-commutative generalization of integrable quadratic ODE systems

被引:0
|
作者
V. Sokolov
T. Wolf
机构
[1] Landau Institute for Theoretical Physics,Department of Mathematics and Statistics
[2] UFABC,undefined
[3] Brock University,undefined
来源
关键词
Non-commutative ODEs; Integrability; Symmetries; Painlevé test; 37K10; 34M55;
D O I
暂无
中图分类号
学科分类号
摘要
We find all homogeneous quadratic systems of ODEs with two dependent variables that have polynomial first integrals and satisfy the Kowalevski–Lyapunov test. Such systems have infinitely many polynomial infinitesimal symmetries. We describe all possible non-commutative generalizations of these systems and their symmetries. As a result, new integrable quadratic homogeneous systems of ODEs with two non-commutative variables are constructed. Their integrable non-commutative inhomogeneous generalizations are found. In particular, a non-commutative generalization of a Hamiltonian flow on the elliptic curve is presented.
引用
收藏
页码:533 / 553
页数:20
相关论文
共 50 条
  • [41] Conservative dilations of dissipative multidimensional systems: The commutative and non-commutative settings
    Ball, Joseph A.
    Kaliuzhnyi-Verbovetskyi, Dmitry S.
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2008, 19 (01) : 79 - 122
  • [42] Witt vectors, commutative and non-commutative
    Kaledin, D. B.
    RUSSIAN MATHEMATICAL SURVEYS, 2018, 73 (01) : 1 - 30
  • [43] Non-commutative renormalization
    Rivasseau, Vincent
    QUANTUM SPACES: POINCARE SEMINAR 2007, 2007, 53 : 19 - 107
  • [44] Non-commutative fluids
    Polychronakos, Alexios P.
    QUANTUM SPACES: POINCARE SEMINAR 2007, 2007, 53 : 109 - 159
  • [45] On Non-commutative Spreadability
    Griseta, Maria Elena
    OPERATOR AND MATRIX THEORY, FUNCTION SPACES, AND APPLICATIONS, IWOTA 2022, 2024, 295 : 189 - 202
  • [46] Non-commutative amoebas
    Mikhalkin, Grigory
    Shkolnikov, Mikhail
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2022, 54 (02) : 335 - 368
  • [47] Non-commutative worlds
    Kauffman, LH
    NEW JOURNAL OF PHYSICS, 2004, 6 : 1 - 47
  • [48] A non-commutative Nullstellensatz
    Bao, Zhengheng
    Reichstein, Zinovy
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (04)
  • [49] Non-commutative solitons
    Gopakumar, R
    Minwalla, S
    Strominger, A
    JOURNAL OF HIGH ENERGY PHYSICS, 2000, (05):
  • [50] Non-commutative tachyons
    Dasgupta, K
    Rajesh, G
    Mukhi, S
    JOURNAL OF HIGH ENERGY PHYSICS, 2000, (06):