Non-commutative generalization of integrable quadratic ODE systems

被引:0
|
作者
V. Sokolov
T. Wolf
机构
[1] Landau Institute for Theoretical Physics,Department of Mathematics and Statistics
[2] UFABC,undefined
[3] Brock University,undefined
来源
关键词
Non-commutative ODEs; Integrability; Symmetries; Painlevé test; 37K10; 34M55;
D O I
暂无
中图分类号
学科分类号
摘要
We find all homogeneous quadratic systems of ODEs with two dependent variables that have polynomial first integrals and satisfy the Kowalevski–Lyapunov test. Such systems have infinitely many polynomial infinitesimal symmetries. We describe all possible non-commutative generalizations of these systems and their symmetries. As a result, new integrable quadratic homogeneous systems of ODEs with two non-commutative variables are constructed. Their integrable non-commutative inhomogeneous generalizations are found. In particular, a non-commutative generalization of a Hamiltonian flow on the elliptic curve is presented.
引用
收藏
页码:533 / 553
页数:20
相关论文
共 50 条
  • [21] On the generalization of linear least mean squares estimation to quantum systems with non-commutative outputs
    Amini, Nina H.
    Miao, Zibo
    Pan, Yu
    James, Matthew R.
    Mabuchi, Hideo
    EPJ QUANTUM TECHNOLOGY, 2015, 2
  • [22] On the generalization of linear least mean squares estimation to quantum systems with non-commutative outputs
    Nina H Amini
    Zibo Miao
    Yu Pan
    Matthew R James
    Hideo Mabuchi
    EPJ Quantum Technology, 2
  • [23] On the quantum dynamics of non-commutative systems
    Bemfica, F. S.
    Girotti, H. O.
    BRAZILIAN JOURNAL OF PHYSICS, 2008, 38 (02) : 227 - 236
  • [24] NON-COMMUTATIVE DYNAMIC-SYSTEMS
    GUICHARD.A
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1973, 277 (06): : 289 - 290
  • [25] Non-commutative bounded Vilenkin systems
    Dodds, PG
    Sukochev, FA
    MATHEMATICA SCANDINAVICA, 2000, 87 (01) : 73 - 92
  • [26] Non-commutative automorphisms of bounded non-commutative domains
    McCarthy, John E.
    Timoney, Richard M.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2016, 146 (05) : 1037 - 1045
  • [27] A generalization of Slavnov-extended non-commutative gauge theories
    Blaschke, Daniel N.
    Hohenegger, Stefan
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (08):
  • [28] Bihamiltonian Structures and Quadratic Algebras in Hydrodynamics and on Non-Commutative Torus
    B. Khesin
    A. Levin
    M. Olshanetsky
    Communications in Mathematical Physics, 2004, 250 : 581 - 612
  • [29] Bihamiltonian structures and quadratic algebras in hydrodynamics and on non-commutative torus
    Khesin, B
    Levin, A
    Olshanetsky, M
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 250 (03) : 581 - 612
  • [30] Testing non-commutative QED, constructing non-commutative MHD
    Guralnik, Z
    Jackiw, R
    Pi, SY
    Polychronakos, AP
    PHYSICS LETTERS B, 2001, 517 (3-4) : 450 - 456