Deterministic delivery of remote entanglement on a quantum network

被引:0
|
作者
Peter C. Humphreys
Norbert Kalb
Jaco P. J. Morits
Raymond N. Schouten
Raymond F. L. Vermeulen
Daniel J. Twitchen
Matthew Markham
Ronald Hanson
机构
[1] QuTech and Kavli Institute of Nanoscience,
[2] Delft University of Technology,undefined
[3] Element Six Innovation,undefined
来源
Nature | 2018年 / 558卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Large-scale quantum networks promise to enable secure communication, distributed quantum computing, enhanced sensing and fundamental tests of quantum mechanics through the distribution of entanglement across nodes1–7. Moving beyond current two-node networks8–13 requires the rate of entanglement generation between nodes to exceed the decoherence (loss) rate of the entanglement. If this criterion is met, intrinsically probabilistic entangling protocols can be used to provide deterministic remote entanglement at pre-specified times. Here we demonstrate this using diamond spin qubit nodes separated by two metres. We realize a fully heralded single-photon entanglement protocol that achieves entangling rates of up to 39 hertz, three orders of magnitude higher than previously demonstrated two-photon protocols on this platform14. At the same time, we suppress the decoherence rate of remote-entangled states to five hertz through dynamical decoupling. By combining these results with efficient charge-state control and mitigation of spectral diffusion, we deterministically deliver a fresh remote state with an average entanglement fidelity of more than 0.5 at every clock cycle of about 100 milliseconds without any pre- or post-selection. These results demonstrate a key building block for extended quantum networks and open the door to entanglement distribution across multiple remote nodes.
引用
收藏
页码:268 / 273
页数:5
相关论文
共 50 条
  • [31] Remote-controlled quantum computing by quantum entanglement
    Wang, Dongyang
    Liu, Yong
    Ding, Jiangfang
    Qiang, Xiaogang
    Liu, Yingwen
    Huang, Anqi
    Fu, Xiang
    Xu, Ping
    Deng, Mingtang
    Yang, Xuejun
    Wu, Junjie
    OPTICS LETTERS, 2020, 45 (22) : 6298 - 6301
  • [32] General Quantum Circuits for Implementing Deterministic Entanglement Conversion
    Cheng, Liu-Yong
    Shao, Xiao-Qiang
    Wang, Hong-Fu
    Zhang, Shou
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (10) : 3134 - 3140
  • [33] General Quantum Circuits for Implementing Deterministic Entanglement Conversion
    Liu-Yong Cheng
    Xiao-Qiang Shao
    Hong-Fu Wang
    Shou Zhang
    International Journal of Theoretical Physics, 2011, 50 : 3134 - 3140
  • [34] Deterministic quantum entanglement between macroscopic ferrite samples
    Nair, Jayakrishnan M. P.
    Agarwal, G. S.
    APPLIED PHYSICS LETTERS, 2020, 117 (08)
  • [35] Deterministic generation of multiparticle entanglement by quantum Zeno dynamics
    Barontini, Giovanni
    Hohmann, Leander
    Haas, Florian
    Esteve, Jerome
    Reichel, Jakob
    SCIENCE, 2015, 349 (6254) : 1317 - 1321
  • [36] Protocol and quantum circuits for realizing deterministic entanglement concentration
    Gu, YJ
    Li, WD
    Guo, GC
    PHYSICAL REVIEW A, 2006, 73 (02):
  • [37] Quantum entanglement in the triangle network
    Kraft, Tristan
    Designolle, Sebastien
    Ritz, Christina
    Brunner, Nicolas
    Guehne, Otfried
    Huber, Marcus
    PHYSICAL REVIEW A, 2021, 103 (06)
  • [38] Deterministic bidirectional communication and remote entanglement generation between superconducting qubits
    Leung, N.
    Lu, Y.
    Chakram, S.
    Naik, R. K.
    Earnest, N.
    Ma, R.
    Jacobs, K.
    Cleland, A. N.
    Schuster, D. I.
    NPJ QUANTUM INFORMATION, 2019, 5 (1)
  • [39] Deterministic bidirectional communication and remote entanglement generation between superconducting qubits
    N. Leung
    Y. Lu
    S. Chakram
    R. K. Naik
    N. Earnest
    R. Ma
    K. Jacobs
    A. N. Cleland
    D. I. Schuster
    npj Quantum Information, 5
  • [40] Secure quantum remote sensing without entanglement
    Moore, Sean W.
    Dunningham, Jacob A.
    AVS QUANTUM SCIENCE, 2023, 5 (01):