Deterministic delivery of remote entanglement on a quantum network

被引:0
|
作者
Peter C. Humphreys
Norbert Kalb
Jaco P. J. Morits
Raymond N. Schouten
Raymond F. L. Vermeulen
Daniel J. Twitchen
Matthew Markham
Ronald Hanson
机构
[1] QuTech and Kavli Institute of Nanoscience,
[2] Delft University of Technology,undefined
[3] Element Six Innovation,undefined
来源
Nature | 2018年 / 558卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Large-scale quantum networks promise to enable secure communication, distributed quantum computing, enhanced sensing and fundamental tests of quantum mechanics through the distribution of entanglement across nodes1–7. Moving beyond current two-node networks8–13 requires the rate of entanglement generation between nodes to exceed the decoherence (loss) rate of the entanglement. If this criterion is met, intrinsically probabilistic entangling protocols can be used to provide deterministic remote entanglement at pre-specified times. Here we demonstrate this using diamond spin qubit nodes separated by two metres. We realize a fully heralded single-photon entanglement protocol that achieves entangling rates of up to 39 hertz, three orders of magnitude higher than previously demonstrated two-photon protocols on this platform14. At the same time, we suppress the decoherence rate of remote-entangled states to five hertz through dynamical decoupling. By combining these results with efficient charge-state control and mitigation of spectral diffusion, we deterministically deliver a fresh remote state with an average entanglement fidelity of more than 0.5 at every clock cycle of about 100 milliseconds without any pre- or post-selection. These results demonstrate a key building block for extended quantum networks and open the door to entanglement distribution across multiple remote nodes.
引用
收藏
页码:268 / 273
页数:5
相关论文
共 50 条
  • [21] Remote entanglement for quantum networks
    Saif, Farhan
    ul Haq, Sami
    OPTIK, 2014, 125 (22): : 6616 - 6619
  • [22] Remote entanglement distribution in a quantum network via multinode indistinguishability of photons
    Wang, Yan
    Hao, Ze-Yan
    Liu, Zheng-Hao
    Sun, Kai
    Xu, Jin-Shi
    Li, Chuan-Feng
    Guo, Guang-Can
    Castellini, Alessia
    Bellomo, Bruno
    Compagno, Giuseppe
    Lo Franco, Rosario
    PHYSICAL REVIEW A, 2022, 106 (03)
  • [23] Influence of decoherence of entanglement on deterministic remote state preparation
    Guo Zhen
    Yan Lian-Shan
    Pan Wei
    Luo Bin
    Xu Ming-Feng
    ACTA PHYSICA SINICA, 2011, 60 (06)
  • [24] Deterministic distribution of multipartite entanglement in a quantum network by continuous-variable polarization states
    Wu, Liang
    Chai, Ting
    Liu, Yanhong
    Zhou, Yaoyao
    Qin, Jiliang
    Yan, Zhihui
    Jia, Xiaojun
    OPTICS EXPRESS, 2022, 30 (04) : 6388 - 6396
  • [25] Entanglement and deterministic quantum computing with one qubit
    Boyer, Michel
    Brodutch, Aharon
    Mor, Tal
    PHYSICAL REVIEW A, 2017, 95 (02)
  • [26] Deterministic secure quantum communication with and without entanglement
    Elsayed, Tarek A.
    PHYSICA SCRIPTA, 2021, 96 (02)
  • [27] Robustness and symmetry of deterministic quantum entanglement swapping
    Zhao, Hao
    Shan, Chuanjia
    Physical Review A, 2024, 110 (03)
  • [28] Deterministic Quantum Cryptographic Communication with Entanglement State
    Huang, Dazu
    Chen, Zhigang
    2009 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INTELLIGENT SYSTEMS, PROCEEDINGS, VOL 3, 2009, : 346 - 349
  • [29] QUANTUM OPTICS Exploring remote entanglement
    Moehring, David L.
    Blinov, Boris B.
    NATURE PHOTONICS, 2011, 5 (08) : 454 - 456
  • [30] Theory of Deterministic Entanglement Generation between Remote Superconducting Atoms
    Koshino, K.
    Inomata, K.
    Lin, Z. R.
    Tokunaga, Y.
    Yamamoto, T.
    Nakamura, Y.
    PHYSICAL REVIEW APPLIED, 2017, 7 (06):