Following Li and Yau (Acta Math 156:153–201 1986) and similar to Perelman (The entropy formula for the Ricci flow and its geometric applications), we define an energy functional \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal{J}}$$\end{document} associated to a smooth function \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\phi}$$\end{document} on a complete Riemannian manifold. As an application, we deduce integral Ricci curvature upper bounds along modified geodesics for complete steady and shrinking gradient Ricci solitons.
机构:
Tokyo Univ Sci, Dept Math, Shinjuku Ku, 1-3 Kagurazaka, Tokyo 1628601, JapanTokyo Univ Sci, Dept Math, Shinjuku Ku, 1-3 Kagurazaka, Tokyo 1628601, Japan
机构:
Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Peoples R China
Yanqi Lake Beijing Inst Math Sci & Applicat, Beijing 101408, Peoples R ChinaZhejiang Univ, Ctr Math Sci, Hangzhou 310027, Peoples R China