Integral Ricci curvature bounds along geodesics for nonexpanding gradient Ricci solitons

被引:0
|
作者
Bennett Chow
Peng Lu
Bo Yang
机构
[1] University of California,Department of Mathematics
[2] San Diego,Department of Mathematics
[3] University of Oregon,undefined
来源
关键词
Ricci soliton; Ricci flow; Ricci curvature; 53C44; 58J35; 53C22;
D O I
暂无
中图分类号
学科分类号
摘要
Following Li and Yau (Acta Math 156:153–201 1986) and similar to Perelman (The entropy formula for the Ricci flow and its geometric applications), we define an energy functional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{J}}$$\end{document} associated to a smooth function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi}$$\end{document} on a complete Riemannian manifold. As an application, we deduce integral Ricci curvature upper bounds along modified geodesics for complete steady and shrinking gradient Ricci solitons.
引用
收藏
页码:279 / 285
页数:6
相关论文
共 50 条