Integral Ricci curvature bounds along geodesics for nonexpanding gradient Ricci solitons

被引:0
|
作者
Bennett Chow
Peng Lu
Bo Yang
机构
[1] University of California,Department of Mathematics
[2] San Diego,Department of Mathematics
[3] University of Oregon,undefined
来源
关键词
Ricci soliton; Ricci flow; Ricci curvature; 53C44; 58J35; 53C22;
D O I
暂无
中图分类号
学科分类号
摘要
Following Li and Yau (Acta Math 156:153–201 1986) and similar to Perelman (The entropy formula for the Ricci flow and its geometric applications), we define an energy functional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{J}}$$\end{document} associated to a smooth function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi}$$\end{document} on a complete Riemannian manifold. As an application, we deduce integral Ricci curvature upper bounds along modified geodesics for complete steady and shrinking gradient Ricci solitons.
引用
收藏
页码:279 / 285
页数:6
相关论文
共 50 条
  • [31] Differential gradient estimates for nonlinear parabolic equations under integral Ricci curvature bounds
    Shahroud Azami
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2024, 118
  • [32] Steady Ricci solitons with horizontally ε-pinched Ricci curvature
    Deng, Yuxing
    Zhu, Xiaohua
    SCIENCE CHINA-MATHEMATICS, 2021, 64 (07) : 1411 - 1428
  • [33] Steady Ricci solitons with horizontally ε-pinched Ricci curvature
    Yuxing Deng
    Xiaohua Zhu
    ScienceChina(Mathematics), 2021, 64 (07) : 1411 - 1428
  • [34] Steady Ricci solitons with horizontally ϵ-pinched Ricci curvature
    Yuxing Deng
    Xiaohua Zhu
    Science China Mathematics, 2021, 64 : 1411 - 1428
  • [35] Uniqueness of asymptotic cones of complete noncompact shrinking gradient Ricci solitons with Ricci curvature decay
    Chow, Bennett
    Lu, Peng
    COMPTES RENDUS MATHEMATIQUE, 2015, 353 (11) : 1007 - 1009
  • [36] Classification of expanding and steady Ricci solitons with integral curvature decay
    Catino, Giovanni
    Mastrolia, Paolo
    Monticelli, Dario D.
    GEOMETRY & TOPOLOGY, 2016, 20 (05) : 2665 - 2685
  • [37] Classification of gradient steady Ricci solitons with linear curvature decay
    Yuxing Deng
    Xiaohua Zhu
    Science China(Mathematics), 2020, 63 (01) : 135 - 154
  • [38] Classification of gradient steady Ricci solitons with linear curvature decay
    Yuxing Deng
    Xiaohua Zhu
    Science China Mathematics, 2020, 63 : 135 - 154
  • [39] Compact gradient shrinking Ricci solitons with positive curvature operator
    Xiaodong Cao
    The Journal of Geometric Analysis, 2007, 17
  • [40] Compact almost Ricci solitons with constant scalar curvature are gradient
    Barros, A.
    Batista, R.
    Ribeiro, E., Jr.
    MONATSHEFTE FUR MATHEMATIK, 2014, 174 (01): : 29 - 39