Unirational moduli spaces of some elliptic K3 surfaces

被引:0
|
作者
Mauro Fortuna
Michael Hoff
Giacomo Mezzedimi
机构
[1] Leibniz Universität Hannover,Institut für Algebraische Geometrie
[2] Universität des Saarlandes,Mathematisches Institut
[3] Universität Bonn,undefined
来源
manuscripta mathematica | 2024年 / 173卷
关键词
Primary 14J15; 14J28; 14J27; 14M20; Secondary 32M15;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the moduli space of U⊕⟨-2k⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U\oplus \langle -2k \rangle $$\end{document}-polarized K3 surfaces is unirational for k≤50\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \le 50$$\end{document} and k∉{11,35,42,48}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \notin \{11,35,42,48\}$$\end{document}, and for other several values of k up to k=97\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=97$$\end{document}. Our proof is based on a systematic study of the projective models of elliptic K3 surfaces in Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {P}}^n$$\end{document} for 3≤n≤5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\le n \le 5$$\end{document} containing either the union of two smooth rational curves or the union of a smooth rational curve and an elliptic curve intersecting at one point.
引用
收藏
页码:405 / 423
页数:18
相关论文
共 50 条
  • [1] Unirational moduli spaces of some elliptic K3 surfaces
    Fortuna, Mauro
    Hoff, Michael
    Mezzedimi, Giacomo
    [J]. MANUSCRIPTA MATHEMATICA, 2024, 173 (1-2) : 405 - 423
  • [2] The Kodaira dimension of some moduli spaces of elliptic K3 surfaces
    Fortuna, Mauro
    Mezzedimi, Giacomo
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2021, 104 (01): : 269 - 294
  • [3] On some moduli spaces of bundles on K3 surfaces
    Madonna, CG
    [J]. MONATSHEFTE FUR MATHEMATIK, 2005, 146 (04): : 333 - 339
  • [4] On Some Moduli Spaces of Bundles on K3 Surfaces
    C. G. Madonna
    [J]. Monatshefte für Mathematik, 2005, 146 : 333 - 339
  • [5] ON SOME MODULI SPACES OF BUNDLES ON K3 SURFACES, II
    Madonna, C. G.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (10) : 3397 - 3408
  • [6] Compact moduli of elliptic K3 surfaces
    Ascher, Kenneth
    Bejleri, Dori
    [J]. GEOMETRY & TOPOLOGY, 2023, 27 (05) : 1891 - 1946
  • [7] Supersingular K3 surfaces are unirational
    Christian Liedtke
    [J]. Inventiones mathematicae, 2015, 200 : 979 - 1014
  • [8] Supersingular K3 surfaces are unirational
    Liedtke, Christian
    [J]. INVENTIONES MATHEMATICAE, 2015, 200 (03) : 979 - 1014
  • [9] ON THE IRRATIONALITY OF MODULI SPACES OF K3 SURFACES
    Agostini, Daniele
    Barros, Ignacio
    Lai, Kuan-Wen
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 376 (02) : 1407 - 1426
  • [10] Moduli spaces of sheaves on K3 surfaces
    Sawon, Justin
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2016, 109 : 68 - 82