Unirational moduli spaces of some elliptic K3 surfaces

被引:1
|
作者
Fortuna, Mauro [1 ]
Hoff, Michael [2 ]
Mezzedimi, Giacomo [1 ,3 ]
机构
[1] Leibniz Univ Hannover, Inst Algebra Geometrie, Welfengarten 1, D-30167 Hannover, Germany
[2] Univ Saarland, Campus E2 4, D-66123 Saarbrucken, Germany
[3] Univ Bonn, Math Inst, Endenicher Allee 60, D-53115 Bonn, Germany
关键词
WEIERSTRASS FIBRATIONS;
D O I
10.1007/s00229-022-01455-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the moduli space of U circle plus <-2k >-polarized K3 surfaces is unirational for k <= 50 and k is not an element of{11, 35, 42, 48}, and for other several values of k up to k = 97. Our proof is based on a systematic study of the projective models of elliptic K3 surfaces in P-n for 3 <= n <= 5 containing either the union of two smooth rational curves or the union of a smooth rational curve and an elliptic curve intersecting at one point.
引用
收藏
页码:405 / 423
页数:19
相关论文
共 50 条
  • [1] Unirational moduli spaces of some elliptic K3 surfaces
    Mauro Fortuna
    Michael Hoff
    Giacomo Mezzedimi
    [J]. manuscripta mathematica, 2024, 173 : 405 - 423
  • [2] The Kodaira dimension of some moduli spaces of elliptic K3 surfaces
    Fortuna, Mauro
    Mezzedimi, Giacomo
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2021, 104 (01): : 269 - 294
  • [3] On some moduli spaces of bundles on K3 surfaces
    Madonna, CG
    [J]. MONATSHEFTE FUR MATHEMATIK, 2005, 146 (04): : 333 - 339
  • [4] On Some Moduli Spaces of Bundles on K3 Surfaces
    C. G. Madonna
    [J]. Monatshefte für Mathematik, 2005, 146 : 333 - 339
  • [5] ON SOME MODULI SPACES OF BUNDLES ON K3 SURFACES, II
    Madonna, C. G.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (10) : 3397 - 3408
  • [6] Compact moduli of elliptic K3 surfaces
    Ascher, Kenneth
    Bejleri, Dori
    [J]. GEOMETRY & TOPOLOGY, 2023, 27 (05) : 1891 - 1946
  • [7] Supersingular K3 surfaces are unirational
    Christian Liedtke
    [J]. Inventiones mathematicae, 2015, 200 : 979 - 1014
  • [8] Supersingular K3 surfaces are unirational
    Liedtke, Christian
    [J]. INVENTIONES MATHEMATICAE, 2015, 200 (03) : 979 - 1014
  • [9] ON THE IRRATIONALITY OF MODULI SPACES OF K3 SURFACES
    Agostini, Daniele
    Barros, Ignacio
    Lai, Kuan-Wen
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 376 (02) : 1407 - 1426
  • [10] Moduli spaces of sheaves on K3 surfaces
    Sawon, Justin
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2016, 109 : 68 - 82