On some moduli spaces of bundles on K3 surfaces

被引:2
|
作者
Madonna, CG [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat G Castelnuovo, I-00185 Rome, Italy
来源
MONATSHEFTE FUR MATHEMATIK | 2005年 / 146卷 / 04期
关键词
moduli of vector bundles; K3; surfaces; Hilbert schemes;
D O I
10.1007/s00605-005-0328-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give infinitely many examples in which the moduli space of rank 2 H-stable sheaves on a K3 surface S endowed by a polarization H of degree 2g - 2, with Chern classes c(1) = H and c(2) = g - 1, is birationally equivalent to the Hilbert scheme S[g - 4] of zero dimensional subschemes of S of length g - 4. We get in this way a partial generalization of results from [5] and [1].
引用
收藏
页码:333 / 339
页数:7
相关论文
共 50 条
  • [1] On Some Moduli Spaces of Bundles on K3 Surfaces
    C. G. Madonna
    [J]. Monatshefte für Mathematik, 2005, 146 : 333 - 339
  • [2] ON SOME MODULI SPACES OF BUNDLES ON K3 SURFACES, II
    Madonna, C. G.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (10) : 3397 - 3408
  • [3] Moduli spaces of bundles over nonprojective K3 surfaces
    Perego, Arvid
    Toma, Matei
    [J]. KYOTO JOURNAL OF MATHEMATICS, 2017, 57 (01) : 107 - 146
  • [4] ON SOME MODULI SPACES OF RANK-2 BUNDLES OVER K3 SURFACES
    BALLICO, E
    CHIANTINI
    [J]. BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1993, 7A (02): : 279 - 287
  • [5] Hodge numbers of moduli spaces of stable bundles on K3 surfaces
    Gottsche, L
    Huybrechts, D
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 1996, 7 (03) : 359 - 372
  • [6] Birational Maps of Moduli Spaces of Vector Bundles on K3 Surfaces
    Kimura, Masanori
    Yoshioka, Kota
    [J]. TOKYO JOURNAL OF MATHEMATICS, 2011, 34 (02) : 473 - 491
  • [7] Unirational moduli spaces of some elliptic K3 surfaces
    Mauro Fortuna
    Michael Hoff
    Giacomo Mezzedimi
    [J]. manuscripta mathematica, 2024, 173 : 405 - 423
  • [8] Unirational moduli spaces of some elliptic K3 surfaces
    Fortuna, Mauro
    Hoff, Michael
    Mezzedimi, Giacomo
    [J]. MANUSCRIPTA MATHEMATICA, 2024, 173 (1-2) : 405 - 423
  • [9] ON THE IRRATIONALITY OF MODULI SPACES OF K3 SURFACES
    Agostini, Daniele
    Barros, Ignacio
    Lai, Kuan-Wen
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 376 (02) : 1407 - 1426
  • [10] Moduli spaces of sheaves on K3 surfaces
    Sawon, Justin
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2016, 109 : 68 - 82