Maximal, potential and singular operators in vanishing generalized Morrey spaces

被引:0
|
作者
Natasha Samko
机构
[1] Luleå University of Technology,
[2] Narvik University College,undefined
来源
关键词
Morrey spaces; Vanishing generalized Morrey spaces; Maximal operator; Singular operator; Potential operator; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce vanishing generalized Morrey spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${V\mathcal{L}^{p,\varphi}_\Pi (\Omega), \Omega \subseteq \mathbb{R}^n}$$\end{document} with a general function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi(x, r)}$$\end{document} defining the Morrey-type norm. Here \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi \subseteq \Omega}$$\end{document} is an arbitrary subset in Ω including the extremal cases \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi = \{x_0\}, x_0 \in \Omega}$$\end{document} and Π = Ω, which allows to unify vanishing local and global Morrey spaces. In the spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${V\mathcal{L}^{p,\varphi}_\Pi (\mathbb{R}^n)}$$\end{document} we prove the boundedness of a class of sublinear singular operators, which includes Hardy-Littlewood maximal operator and Calderon-Zygmund singular operators with standard kernel. We also prove a Sobolev-Spanne type \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${V\mathcal{L}^{p,\varphi}_\Pi (\mathbb{R}^n) \rightarrow V\mathcal{L}^{q,\varphi^\frac{q}{p}}_\Pi (\mathbb{R}^n)}$$\end{document} -theorem for the potential operator Iα. The conditions for the boundedness are given in terms of Zygmund-type integral inequalities on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi(x, r)}$$\end{document}. No monotonicity type condition is imposed on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi(x, r)}$$\end{document}. In case \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi}$$\end{document} has quasi- monotone properties, as a consequence of the main results, the conditions of the boundedness are also given in terms of the Matuszeska-Orlicz indices of the function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi}$$\end{document}. The proofs are based on pointwise estimates of the modulars defining the vanishing spaces
引用
收藏
页码:1385 / 1399
页数:14
相关论文
共 50 条
  • [21] Maximal operators and singular integrals on the weighted Lorentz and Morrey spaces
    Nguyen Minh Chuong
    Dao Van Duong
    Kieu Huu Dung
    Journal of Pseudo-Differential Operators and Applications, 2020, 11 : 201 - 228
  • [22] Maximal operators and singular integrals on the weighted Lorentz and Morrey spaces
    Nguyen Minh Chuong
    Dao Van Duong
    Kieu Huu Dung
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2020, 11 (01) : 201 - 228
  • [23] Boundedness of Maximal and Singular Operators in Morrey Spaces with Variable Exponent
    Kokilashvili, Vakhtang
    Meskhi, Alexander
    ARMENIAN JOURNAL OF MATHEMATICS, 2008, 1 (01): : 18 - 28
  • [24] BOUNDEDNESS OF CERTAIN BILINEAR OPERATORS ON VANISHING GENERALIZED MORREY SPACES
    Luo, Mengfei
    Fu, Xing
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2022, 52 (01) : 223 - 242
  • [25] MULTI-SUBLINEAR MAXIMAL OPERATOR AND MULTILINEAR SINGULAR INTEGRAL OPERATORS ON GENERALIZED MORREY SPACES
    Guliyev, Vagif S.
    Ismayilova, Afag F.
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2014, 40 (02): : 65 - 77
  • [26] Maximal and singular operators in the local "complementary" generalized variable exponent Morrey spaces on unbounded sets
    Aykol, Canay
    Badalov, Xayyam A.
    Hasanov, Javanshir J.
    QUAESTIONES MATHEMATICAE, 2020, 43 (10) : 1487 - 1512
  • [27] Vanishing generalized Orlicz-Morrey spaces and fractional maximal operator
    Deringoz, Fatih
    Guliyev, Vagif S.
    Samko, Stefan
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2017, 90 (1-2): : 125 - 147
  • [28] Maximal and potential operators in variable exponent Morrey spaces
    Almeida, Alexandre
    Hasanov, Javanshir
    Samko, Stefan
    GEORGIAN MATHEMATICAL JOURNAL, 2008, 15 (02) : 195 - 208
  • [29] Boundedness of commutators of singular and potential operators in generalized grand Morrey spaces and some applications
    Kokilashvili, Vakhtang
    Meskhi, Alexander
    Rafeiro, Humberto
    STUDIA MATHEMATICA, 2013, 217 (02) : 159 - 178
  • [30] Boundedness of anisotoropic singular operators on generalized anisotoropic Morrey spaces
    Guliyev, HV
    PROCEEDINGS OF THE SECOND ISAAC CONGRESS, VOLS 1 AND 2, 2000, 7 : 1241 - 1247