Maximal and potential operators in variable exponent Morrey spaces

被引:6
|
作者
Almeida, Alexandre [1 ]
Hasanov, Javanshir [2 ]
Samko, Stefan [3 ]
机构
[1] Univ Aveiro, Dept Math, P-3810193 Aveiro, Portugal
[2] NAS Azerbaijan, Inst Math & Mech, AZ-1141 Baku, Azerbaijan
[3] Univ Algarve, Dept Math, P-8005139 Faro, Portugal
关键词
maximal function; fractional maximal operator; Riesz potential; Morrey space; variable exponent; Hardy-Littlewood-Sobolev type estimate; BMO space;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the boundedness of the Hardy-Littlewood maximal operator on variable Morrey spaces L-p(.),(gimel(.))(ohm) over a bounded open set ohm subset of R-n and a Sobolev type L-p(.),(gimel(.)) -> L-q(.),(gimel(.))-theorem for potential operators I-alpha(.), also of variable order. In the case of constant alpha, the limiting case is also studied when the potential operator I-alpha acts into BMO space.
引用
收藏
页码:195 / 208
页数:14
相关论文
共 50 条
  • [1] BOUNDEDNESS OF THE MAXIMAL, POTENTIAL AND SINGULAR OPERATORS IN THE GENERALIZED VARIABLE EXPONENT MORREY SPACES
    Guliyev, Vagif S.
    Hasanov, Javanshir J.
    Samko, Stefan G.
    MATHEMATICA SCANDINAVICA, 2010, 107 (02) : 285 - 304
  • [2] Boundedness of Maximal and Singular Operators in Morrey Spaces with Variable Exponent
    Kokilashvili, Vakhtang
    Meskhi, Alexander
    ARMENIAN JOURNAL OF MATHEMATICS, 2008, 1 (01): : 18 - 28
  • [3] Fractional maximal and integral operators in variable exponent Morrey spaces
    Wang, Panwang
    Liu, Zongguang
    ARMENIAN JOURNAL OF MATHEMATICS, 2019, 11 (01):
  • [4] Maximal, Potential, and Singular Operators in the Generalized Variable Exponent Morrey Spaces on Unbounded Sets
    Guliyev V.S.
    Samko S.G.
    Journal of Mathematical Sciences, 2013, 193 (2) : 228 - 248
  • [5] Maximal, potential and singular operators in the local "complementary" variable exponent Morrey type spaces
    Guliyev, Vagif S.
    Hasanov, Javanshir J.
    Samko, Stefan G.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 401 (01) : 72 - 84
  • [6] Boundedness of maximal, potential type, and singular integral operators in the generalized variable exponent Morrey type spaces
    Guliyev V.S.
    Hasanov J.J.
    Samko S.G.
    Journal of Mathematical Sciences, 2010, 170 (4) : 423 - 443
  • [7] On maximal and potential operators with rough kernels in variable exponent spaces
    Rafeiro, Humberto
    Samko, Stefan
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2016, 27 (03) : 309 - 325
  • [8] ON THE BOUNDEDNESS OF MAXIMAL AND POTENTIAL OPERATORS IN VARIABLE EXPONENT AMALGAM SPACES
    Meskhi, Alexander
    Zaighum, Muhammad Asad
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2014, 8 (01): : 123 - 152
  • [9] MAXIMAL AND SINGULAR INTEGRAL OPERATORS AND THEIR COMMUTATORS ON GENERALIZED WEIGHTED MORREY SPACES WITH VARIABLE EXPONENT
    Guliyev, Vagif S.
    Hasanov, Javanshir J.
    Badalov, Xayyam A.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2018, 21 (01): : 41 - 61
  • [10] The Commutators of Multilinear Maximal and Fractional-Type Operators on Central Morrey Spaces with Variable Exponent
    Wang, Liwei
    JOURNAL OF FUNCTION SPACES, 2022, 2022