Maximal and potential operators in variable exponent Morrey spaces

被引:6
|
作者
Almeida, Alexandre [1 ]
Hasanov, Javanshir [2 ]
Samko, Stefan [3 ]
机构
[1] Univ Aveiro, Dept Math, P-3810193 Aveiro, Portugal
[2] NAS Azerbaijan, Inst Math & Mech, AZ-1141 Baku, Azerbaijan
[3] Univ Algarve, Dept Math, P-8005139 Faro, Portugal
关键词
maximal function; fractional maximal operator; Riesz potential; Morrey space; variable exponent; Hardy-Littlewood-Sobolev type estimate; BMO space;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the boundedness of the Hardy-Littlewood maximal operator on variable Morrey spaces L-p(.),(gimel(.))(ohm) over a bounded open set ohm subset of R-n and a Sobolev type L-p(.),(gimel(.)) -> L-q(.),(gimel(.))-theorem for potential operators I-alpha(.), also of variable order. In the case of constant alpha, the limiting case is also studied when the potential operator I-alpha acts into BMO space.
引用
收藏
页码:195 / 208
页数:14
相关论文
共 50 条