Generalized fractional integral operators on variable exponent Morrey spaces of an integral form

被引:0
|
作者
T. Ohno
T. Shimomura
机构
[1] Oita University,Faculty of Education
[2] Hiroshima University,Department of Mathematics, Graduate School of Humanities and Social Sciences
来源
Acta Mathematica Hungarica | 2022年 / 167卷
关键词
Riesz potential; maximal function; Sobolev's inequality; Morrey space; variable exponent; primary 46E30; secondary 42B25;
D O I
暂无
中图分类号
学科分类号
摘要
We establish the boundedness of generalized fractional integral operators Iρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{\rho}$$\end{document} on variable exponent Morrey spaces of an integral form Lp(·),ω(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{L}^{p(\cdot),\omega}(G)$$\end{document}, where ρ(x,r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho(x,r)$$\end{document} and ω(x,r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega(x,r)$$\end{document}are general functions satisfying certain conditions.
引用
收藏
页码:201 / 214
页数:13
相关论文
共 50 条
  • [1] GENERALIZED FRACTIONAL INTEGRAL OPERATORS ON VARIABLE EXPONENT MORREY SPACES OF AN INTEGRAL FORM
    Ohno, T.
    Shimomura, T.
    ACTA MATHEMATICA HUNGARICA, 2022, 167 (01) : 201 - 214
  • [2] Fractional maximal and integral operators in variable exponent Morrey spaces
    Wang, Panwang
    Liu, Zongguang
    ARMENIAN JOURNAL OF MATHEMATICS, 2019, 11 (01):
  • [3] Multilinear fractional integral operators on central Morrey spaces with variable exponent
    Wang, Hongbin
    Xu, Jingshi
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (01)
  • [4] THE FRACTIONAL INTEGRAL OPERATORS ON MORREY SPACES WITH VARIABLE EXPONENT ON UNBOUNDED DOMAINS
    Ho, Kwok-Pun
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2013, 16 (02): : 363 - 373
  • [5] Multilinear fractional integral operators on central Morrey spaces with variable exponent
    Hongbin Wang
    Jingshi Xu
    Journal of Inequalities and Applications, 2019
  • [6] Generalized fractional integral operators on variable exponent Morrey type spaces over metric measure spaces
    Ohno, Takao
    Shimomura, Tetsu
    PORTUGALIAE MATHEMATICA, 2022, 79 (3-4) : 265 - 282
  • [7] Multilinear Fractional Integral Operators on Morrey Spaces with Variable Exponent on Bounded Domain
    Wang Min
    Qu Meng
    Shu Li-sheng
    Ji You-qing
    Communications in Mathematical Research, 2015, 31 (03) : 253 - 260
  • [8] CHARACTERIZATIONS FOR THE GENERALIZED FRACTIONAL INTEGRAL OPERATORS ON MORREY SPACES
    Eridani
    Gunawan, Hendra
    Nakai, Eiichi
    Sawano, Yoshihiro
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (02): : 761 - 777
  • [9] A Note on Generalized Fractional Integral Operators on Generalized Morrey Spaces
    Sawano, Yoshihiro
    Sugano, Satoko
    Tanaka, Hitoshi
    BOUNDARY VALUE PROBLEMS, 2009,
  • [10] A Note on Generalized Fractional Integral Operators on Generalized Morrey Spaces
    Yoshihiro Sawano
    Satoko Sugano
    Hitoshi Tanaka
    Boundary Value Problems, 2009