Normal and mixed partial second-order subdifferentials in variational analysis and optimization

被引:0
|
作者
Ildar Sadeqi
Somayeh Nadi
机构
[1] Sahand University of Technology,Department of Mathematics
来源
Positivity | 2018年 / 22卷
关键词
Coderivatives; Second-order subdifferentials; Stability; Strictly differentiable mappings; Variational analysis; 58C06; 49G52; 49G53;
D O I
暂无
中图分类号
学科分类号
摘要
A partial second-order subdifferential is defined here for extended real valued functions of two variables corresponding to its variables through coderivatives of first-order partial subdifferential mappings. In addition, some rules are presented to calculate these second-order structures along with defining some conditions to insure the equality ∂yx2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial ^2_{yx}$$\end{document} and ∂xy2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial ^2_{xy}$$\end{document}. Moreover, as an application, some conditions are stated which show the relation between local minimum of a function and positiveness of principal minors of its hessian matrix.
引用
收藏
页码:671 / 685
页数:14
相关论文
共 50 条
  • [21] Second-Order Sensitivity Analysis for Bilevel Optimization
    Dyro, Robert
    Schmerling, Edward
    Arechiga, Nikos
    Pavone, Marco
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [22] SECOND-ORDER OPTIMALITY CONDITIONS FOR GENERAL NONCONVEX OPTIMIZATION PROBLEMS AND VARIATIONAL ANALYSIS OF DISJUNCTIVE SYSTEMS
    Benko, Matus
    Gfrerer, Helmut
    Ye, Jane J.
    Zhang, Jin
    Zhou, Jinchuan
    SIAM JOURNAL ON OPTIMIZATION, 2023, 33 (04) : 2625 - 2653
  • [23] Second-Order Duality for Variational Problems
    Husain, I.
    Ahmed, A.
    Masoodi, Mashoob
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2009, 2 (02): : 278 - 295
  • [24] The variational bicomplex for hyperbolic second-order scalar partial differential equations in the plane
    Anderson, IM
    Kamran, N
    DUKE MATHEMATICAL JOURNAL, 1997, 87 (02) : 265 - 319
  • [25] Passive Control of Singularities by Topological Optimization: The Second-Order Mixed Shape Derivatives of Energy Functionals for Variational Inequalities
    Leugering, Guenter
    Sokolowski, Jan
    Zochowski, Antoni
    ADVANCES IN MATHEMATICAL MODELING, OPTIMIZATION AND OPTIMAL CONTROL, 2016, 109 : 65 - 102
  • [26] FR\'ECHET SECOND-ORDER SUBDIFFERENTIALS OF LAGRANGIAN FUNCTIONS AND OPTIMALITY CONDITIONS
    An, Duong Thi Viet
    Xu, Hong-Kun
    Yen, Nguyen Dong
    SIAM JOURNAL ON OPTIMIZATION, 2023, 33 (02) : 766 - 784
  • [27] Characterizing Convexity of a Function by Its Frechet and Limiting Second-Order Subdifferentials
    Chieu, N. H.
    Chuong, T. D.
    Yao, J. -C.
    Yen, N. D.
    SET-VALUED AND VARIATIONAL ANALYSIS, 2011, 19 (01) : 75 - 96
  • [28] First- and second-order optimality conditions of nonsmooth sparsity multiobjective optimization via variational analysis
    Jiawei Chen
    Huasheng Su
    Xiaoqing Ou
    Yibing Lv
    Journal of Global Optimization, 2024, 89 : 303 - 325
  • [29] First- and second-order optimality conditions of nonsmooth sparsity multiobjective optimization via variational analysis
    Chen, Jiawei
    Su, Huasheng
    Ou, Xiaoqing
    Lv, Yibing
    JOURNAL OF GLOBAL OPTIMIZATION, 2024, 89 (02) : 303 - 325
  • [30] Higher order accuracy analysis of the second-order normal form method
    Zhenfang Xin
    Zhengxing Zuo
    Huihua Feng
    David Wagg
    Simon Neild
    Nonlinear Dynamics, 2012, 70 : 2175 - 2185