FR\'ECHET SECOND-ORDER SUBDIFFERENTIALS OF LAGRANGIAN FUNCTIONS AND OPTIMALITY CONDITIONS

被引:0
|
作者
An, Duong Thi Viet [1 ,2 ]
Xu, Hong-Kun [3 ]
Yen, Nguyen Dong [4 ]
机构
[1] Hangzhou Dianzi Univ, Sch Management, Hangzhou 310018, Peoples R China
[2] Thai Nguyen Univ Sci, Dept Math & Informat, Thai Nguyen 25000, Vietnam
[3] Hangzhou Dianzi Univ, Sch Sci, Hangzhou 310018, Peoples R China
[4] Vietnam Acad Sci & Technol, Inst Math, Hanoi 10307, Vietnam
基金
澳大利亚研究理事会;
关键词
minimization problem on Banach spaces; cone constraint; tangent set; Lagrange multiplier; Fre'; chet second-order subdifferential; second-order necessary optimality condition; second-order sufficient optimality condition; OPTIMIZATION; REGULARITY; STABILITY; MATRICES;
D O I
10.1137/22M1512454
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish some new results on second-order (necessary and sufficient) optimality conditions for minimization problems with abstract constraints in infinite-dimensional spaces, where the objective functions are only assumed to be C1-smooth. For doing so, we apply the concept of Fre'\chet (regular) second-order subdifferential from variational analysis to the Lagrangian function of the problem under investigation. Our results extend and refine several existing ones.
引用
收藏
页码:766 / 784
页数:19
相关论文
共 50 条