Euler's Function in Residue Classes

被引:0
|
作者
Thomas Dence
Carl Pomerance
机构
[1] Ashland University,Department of Mathematics
[2] University of Georgia,Department of Mathematics
来源
The Ramanujan Journal | 1998年 / 2卷
关键词
Field Theory; Fourier Analysis; Number Theory; Asymptotic Formula; Residue Class;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss the distribution of integers n with ϕ(n) in a particular residue class, showing that if a residue class contains a multiple of 4, then it must contain infinitely many numbers ϕ(n). We get asymptotic formulae for the distribution of ϕ(n) in the various residue classes modulo 12.
引用
收藏
页码:7 / 20
页数:13
相关论文
共 50 条
  • [1] Euler's function in residue classes
    Dence, T
    Pomerance, C
    RAMANUJAN JOURNAL, 1998, 2 (1-2): : 7 - 20
  • [2] Residue classes free of values of Euler's function
    Ford, K
    Konyagin, S
    Pomerance, C
    NUMBER THEORY IN PROGRESS, VOLS 1 AND 2: VOL 1: DIOPHANTINE PROBLEMS AND POLYNOMIALS; VOL 2: ELEMENTARY AND ANALYTIC NUMBER THEORY;, 1999, : 805 - 812
  • [3] ON THE DISTRIBUTION OF THE PARTIAL SUM OF EULER'S TOTIENT FUNCTION IN RESIDUE CLASSES
    Lamzouri, Youness
    Phaovibul, M. Tip
    Zaharescu, Alexandru
    COLLOQUIUM MATHEMATICUM, 2011, 123 (01) : 115 - 127
  • [4] The divisor function on residue classes III
    Prapanpong Pongsriiam
    Robert C. Vaughan
    The Ramanujan Journal, 2021, 56 : 697 - 719
  • [5] The divisor function on residue classes III
    Pongsriiam, Prapanpong
    Vaughan, Robert C.
    RAMANUJAN JOURNAL, 2021, 56 (02): : 697 - 719
  • [6] The divisor function on residue classes II
    Pongsriiam, Prapanpong
    Vaughan, Robert C.
    ACTA ARITHMETICA, 2018, 182 (02) : 133 - 181
  • [7] RESIDUE CLASSES OF THE PARTITION-FUNCTION
    MACLEAN, DW
    MATHEMATICS OF COMPUTATION, 1980, 34 (149) : 313 - 317
  • [8] The divisor function on residue classes I
    Pongsriiam, Prapanpong
    Vaughan, Robert C.
    ACTA ARITHMETICA, 2015, 168 (04) : 369 - 381
  • [9] ORDER OF MAGNITUDE OF DIVISOR FUNCTION IN RESIDUE CLASSES
    KOPETZKY, HG
    MONATSHEFTE FUR MATHEMATIK, 1976, 82 (04): : 287 - 295
  • [10] On Euler's function
    Liu, H. -Q.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2016, 146 (04) : 769 - 775