ON THE DISTRIBUTION OF THE PARTIAL SUM OF EULER'S TOTIENT FUNCTION IN RESIDUE CLASSES

被引:1
|
作者
Lamzouri, Youness [1 ]
Phaovibul, M. Tip [1 ]
Zaharescu, Alexandru [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Euler's totient function; distribution in residue classes;
D O I
10.4064/cm123-1-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the distribution of Phi(n) = 1 + Sigma(n)(i=1) phi(i) (which counts the number of Farey fractions of order n) in residue classes. While numerical computations suggest that Phi(n) is equidistributed modulo q if q is odd, and is equidistributed modulo the odd residue classes modulo q when q is even, we prove that the set of integers n such that Phi(n) lies in these residue classes has a positive lower density when q = 3,4. We also provide a simple proof, based on the Selberg-Delange method, of a result of T. Dence and C. Pomerance on the distribution of phi(n) modulo 3.
引用
收藏
页码:115 / 127
页数:13
相关论文
共 50 条
  • [1] On a sum involving the Euler totient function
    Wu, J.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2019, 30 (04): : 536 - 541
  • [2] On the Ratio of the Sum of Divisors and Euler's Totient Function I
    Broughan, Kevin A.
    Delbourgo, Daniel
    JOURNAL OF INTEGER SEQUENCES, 2013, 16 (08)
  • [3] On the Ratio of the Sum of Divisors and Euler's Totient Function II
    Broughan, Kevin A.
    Zhou, Qizhi
    JOURNAL OF INTEGER SEQUENCES, 2014, 17 (09)
  • [4] Euler's Function in Residue Classes
    Thomas Dence
    Carl Pomerance
    The Ramanujan Journal, 1998, 2 : 7 - 20
  • [5] Euler's function in residue classes
    Dence, T
    Pomerance, C
    RAMANUJAN JOURNAL, 1998, 2 (1-2): : 7 - 20
  • [6] Distribution mod p of Euler's Totient and the Sum of Proper Divisors
    Lebowitz-lockard, Noah
    Pollack, Paul
    Roy, Akash Singha
    MICHIGAN MATHEMATICAL JOURNAL, 2024, 74 (01) : 143 - 166
  • [7] Iterating the Sum of Mobius Divisor Function and Euler Totient Function
    Kim, Daeyeoul
    Sarp, Umit
    Ikikardes, Sebahattin
    MATHEMATICS, 2019, 7 (11)
  • [8] A generalization of the Euler's totient function
    Tarnauceanu, Marius
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2015, 8 (04)
  • [9] An Euler totient sum inequality
    Curtin, Brian
    Pourgholi, G. R.
    JOURNAL OF NUMBER THEORY, 2016, 163 : 101 - 113
  • [10] A note on Euler's totient function
    Sandor, Jozsef
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2019, 25 (01) : 32 - 35