ON THE DISTRIBUTION OF THE PARTIAL SUM OF EULER'S TOTIENT FUNCTION IN RESIDUE CLASSES

被引:1
|
作者
Lamzouri, Youness [1 ]
Phaovibul, M. Tip [1 ]
Zaharescu, Alexandru [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Euler's totient function; distribution in residue classes;
D O I
10.4064/cm123-1-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the distribution of Phi(n) = 1 + Sigma(n)(i=1) phi(i) (which counts the number of Farey fractions of order n) in residue classes. While numerical computations suggest that Phi(n) is equidistributed modulo q if q is odd, and is equidistributed modulo the odd residue classes modulo q when q is even, we prove that the set of integers n such that Phi(n) lies in these residue classes has a positive lower density when q = 3,4. We also provide a simple proof, based on the Selberg-Delange method, of a result of T. Dence and C. Pomerance on the distribution of phi(n) modulo 3.
引用
收藏
页码:115 / 127
页数:13
相关论文
共 50 条
  • [31] The sum-of-digits function of canonical number systems: Distribution in residue classes
    Madritsch, Manfred G.
    JOURNAL OF NUMBER THEORY, 2012, 132 (12) : 2756 - 2772
  • [32] On the distribution of the truncated sum-of-digits function of polynomial sequences in residue classes
    H. Liu
    C. Mauduit
    Acta Mathematica Hungarica, 2021, 164 : 360 - 376
  • [33] ON THE DISTRIBUTION OF THE TRUNCATED SUM-OF-DIGITS FUNCTION OF POLYNOMIAL SEQUENCES IN RESIDUE CLASSES
    Liu, H.
    Mauduit, C.
    ACTA MATHEMATICA HUNGARICA, 2021, 164 (02) : 360 - 376
  • [34] EULER TOTIENT FUNCTION AND ITS INVERSE
    GUPTA, H
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1981, 12 (01): : 22 - 30
  • [35] On a group-theoretical generalization of the Euler's totient function
    Tarnauceanu, Marius
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024, 55 (04): : 1231 - 1233
  • [36] Sparse subsets of the natural numbers and Euler's totient function
    Das, Mithun Kumar
    Eyyunni, Pramod
    Patil, Bhuwanesh Rao
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2019, 129 (05):
  • [37] A FUNCTION DERIVED FROM EULER TOTIENT
    不详
    AMERICAN MATHEMATICAL MONTHLY, 1989, 96 (10): : 935 - 936
  • [38] ON SUMS INVOLVING THE EULER TOTIENT FUNCTION
    Kiuchi, Isao
    Tsuruta, Yuki
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024, 109 (03) : 486 - 497
  • [39] Euler's Totient is Sparse
    Sonebi, Omar
    AMERICAN MATHEMATICAL MONTHLY, 2019, 126 (07): : 666 - 666
  • [40] ON SQUARE VALUES OF THE PRODUCT OF THE EULER TOTIENT AND SUM OF DIVISORS FUNCTIONS
    Broughan, Kevin
    Ford, Kevin
    Luca, Florian
    COLLOQUIUM MATHEMATICUM, 2013, 130 (01) : 127 - 137